Math, asked by vijayalakshmijaisank, 9 months ago

If = 2 + √3, find the value of  x^2 + 1/ x^ 2 . [Hint: use the identity ( a+b ) ^2 ]


Pls answer immediately.

Whoever answers fast and correct will be marked as the brainliest

Answers

Answered by Anonymous
12

CorrecT QuestioN :

\sf{If\:x=2+\sqrt{3}}

\sf{Find\:the\: value\:of\:x^2+\frac{1}{x^2}}

[ Hints : Use the identity (a+b)² ]

SolutioN :

\sf{x=2+\sqrt{3}}

Now find the value of \frac{1}{x}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  \:  \:  \:   \:   \:  =  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{3} )(2 -  \sqrt{3} )}

Using the identity a²-b²=(a+b)(a-b)★

  \:  \:  \:  \:  \:  =  \frac{2 -  \sqrt{3} }{ {2}^{2}  -  { (\sqrt{3}) }^{2} }  \\  \:  \:  \:  \:  \:  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \:  \:  \:  \:  \:  =  \frac{2 -  \sqrt{3} }{1}  \\  \:  \:  \:  \:  \:  = 2 -   \sqrt{3}

\sf{Now\:find\:the\: value\:of\:x^2+\frac{1}{x^2}}

 {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  =  {(x +  \frac{1}{x} )}^{2}  - 2.x. \frac{1}{x}

Putting values :-

•x = 2+√3

•1/x = 2-√3 ★

  =   {(2 +  \sqrt{3}  + 2 -  \sqrt{3}) }^{2}  - 2 \\  =  {4}^{2}  - 2 \\  = 16 - 2 \\  = 14(Answer)

Answered by Anonymous
9

GIVEN:

x = 2+\sqrt{3}

TO FIND:

.

x^{2}+\dfrac{1}{x^{2}}

CONCEPT USED:

★We would first find \dfrac{1}{x}

★Then we would find x^{2}+\dfrac{1}{x^{2}}

ANSWER:

Given,

=>x = 2+\sqrt{3}

=>\dfrac{1}{x}=\dfrac{1}{2+\sqrt{3}}

On rationalising the denominator,

=>\dfrac{1}{x}=\dfrac{1(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}

=>\dfrac{1}{x}=\dfrac{(2-\sqrt{3})}{(2^{2}-\sqrt{3}^{2})}

\large\green{\boxed{(a+b) (a-b) =a^{2}-b^{2}}}

=>\dfrac{1}{x}=\dfrac{2-\sqrt{3}}{4-3}

=>\dfrac{1}{x}=\dfrac{2-\sqrt{2}}{1}

.°. \dfrac{1}{x}=2-\sqrt{3}

______________________________________

Now,

=x^{2}+\dfrac{1}{x^{2}}

=x^{2}+\dfrac{1}{x^{2}}-2×\dfrac{1}{x}×x+2×\dfrac{1}{x}{x}

\large\purple{\boxed{(a+b) ^{2}=a^{2}+b^{2}+2ab}}

=(x-\dfrac{1}{x}) ^{2}+2

On substituting the values,

=>x^{2}+\dfrac{1}{x^{2}}= (2+\sqrt{3}-(2-\sqrt{3})^{2}+2

=>x^{2}+\dfrac{1}{x^{2}}=(2+\sqrt{3}-2+\sqrt{3})^{2}+2

=>x^{2}+\dfrac{1}{x^{2}}=(2\sqrt{3})^{2}+2

=>x^{2}+\dfrac{1}{x^{2}}= 12+2

.°.x^{2}+\dfrac{1}{x^{2}}=14

\huge\orange{\boxed{.°.x^{2}+\dfrac{1}{x^{2}}=14}}

Similar questions