Math, asked by bharti10144, 1 year ago

if =2 + √3 then √x+1/√x =​

Answers

Answered by umiko28
0

Answer:

if=2+√3

Step-by-step explanation:

√x+1/√X

(x+1)/√x

Attachments:
Answered by Anonymous
2

[tex] \bf\ \underline{ \bigstar \: we \: know \: that \:  \:  {x}^{2} =  \sqrt{x}  } \\  \\  \sf\ here \: x = 2 +  \sqrt{3}   \\  \\ \bf\ \implies:  \sqrt{x}  =  {(2 +  \sqrt{3} )}^{2} \\  \\ \bf\ \implies: \sqrt{x}  = {2}^{2}   + 2 \times 2  \times  \sqrt{3} +  {( \sqrt{3} )}^{2}   \\  \\ \bf\ \implies: \sqrt{x}  = 4 + 4 \sqrt{3}  + 3 \\  \\\bf\boxed{ \implies: \sqrt{x}   = 7 + 4 \sqrt{3}} \\  \\  \sf\  now \:  \sqrt{x}  +  \frac{1}{ \sqrt{x}}  = ? \\  \\ \bf\ \implies: (7 + 4 \sqrt{3} )+ ( \frac{1}{7 + 4 \sqrt{3} })   \\  \\ \bf\ \implies:  \frac{ {(7 + 4 \sqrt{3} )}^{2}  + 1}{7 + 4 \sqrt{3} }  \\  \\ \bf\ \implies:  \frac{49 + 48 + 56 \sqrt{3} + 1 }{7 + 4 \sqrt{3} }  \\  \\  \bf\ \implies:  \frac{98 + 56 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\ \bf\ \implies:  \frac{14( \cancel{7 + 4 \sqrt{3)}} }{ \cancel{7 + 4 \sqrt{3}} }  \\  \\\bf\boxed{ \underline{ \implies: 14 }} [/tex]

Similar questions