Math, asked by jyothibungi, 1 year ago

if 2.3^x=0.23^y=1000 then 1/x-1/y value

Answers

Answered by TPS
20
2.3^x=0.23^y=1000\\ \\ Taking\ log\ \\ \\ log(2.3^x)=log(0.23^y)=log(1000)\\ \\ \Rightarrow xlog(2.3)=ylog(0.23)=log(10^3)\\ \\ \Rightarrow xlog(0.23 \times 10)=ylog(0.23)=3log(10)\ \\\\ \Rightarrow x[log(0.23)+log (10)]=ylog(0.23)=3log(10)\ \\\\ \Rightarrow x[log(0.23)+1]=ylog(0.23)=3

\\\\ \Rightarrow x= \frac{3}{ log(0.23)+1}\ \ \ and\ \ \ \ y= \frac{3}{log(0.23)}


 \frac{1}{x}- \frac{1}{y}= \frac{ log(0.23)+1}{3}-\frac{log(0.23)}{3}=\frac{ log(0.23)+1-log(0.23)}{3}=\boxed{ \frac{1}{3} }
Answered by Anonymous
10

Answer :-

 \\  \\ \tt  \dfrac{1}{x} -  \dfrac{1}{y} =  \dfrac{1}{3} \\  \\

Solution :-

 \sf  {(2.3)}^{x} =  {(0.23)}^{y} = 1000

 \\  \sf (i) \: {(2.3)}^{x} = 1000 \\  \\ \\  \sf \longrightarrow  {(2.3)}^{x} =  {10}^{3} \\  \\  \\  \sf \longrightarrow  2.3 =  \sqrt[x]{ {10}^{3} } \\  \\  \\  \large \sf \longrightarrow 2.3 =  {10}^{ \frac{3}{x} } -  -  - (1)

 \\  \\ \sf  (ii)  {(0.23)}^{y} =1000 \\  \\  \\  \sf \longrightarrow  {(0.23)}^{y} =  {10}^{3} \\  \\  \\  \sf \longrightarrow 0.23 = \sqrt[y]{ {10}^{3} } \\  \\  \\ \large \sf \longrightarrow 0.23 =  {10}^{ \frac{3}{y} } \\  \\

Multiplying by 10 on both sides

 \\  \\ \longrightarrow \large \sf 0.23 \times 10 =  {10}^{ \frac{3}{y} } \times 10 \\  \\  \\  \large \sf \longrightarrow 2.3 =  {10}^{ \frac{3}{y} + 1 } -  - (2)  \\  \\  \\  \boxed{ \bf \because  {a}^{m} \times  {a}^{n} =  {a}^{m + n} } \\  \\

From eq.(1) an eq.(2)

 \\  \\ \large \sf \longrightarrow  {10}^{ \frac{3}{x} } =  {10}^{ \frac{3}{y} + 1} \\  \\  \\  \sf \longrightarrow  \dfrac{3}{x} =  \dfrac{3}{y} + 1 \\  \\  \\  \boxed{ \bf \because  {a}^{m} =  {a}^{n} \: then \: m = n} \\ \\  \\  \sf \longrightarrow \dfrac{3}{x} -  \dfrac{3}{y} = 1 \\  \\  \\  \sf \longrightarrow 3 \left( \dfrac{1}{x} -  \dfrac{1}{y} \right) = 1 \\  \\  \\  \bf \longrightarrow  \dfrac{1}{x} -  \dfrac{1}{y} =  \dfrac{1}{3}  \\  \\

Similar questions