Math, asked by shlokchaurasiya7799, 7 months ago


If (2.4)x= (0.24)y = 102 the show that 1/x - 1/z=1/y​

Answers

Answered by mysticd
2

 Given \: (2.4)^{x} = (0.24)^{y} = 10^{z}

 Let \: (2.4)^{x} = (0.24)^{y} = 10^{z} = k

 i) (2.4)^{x} = k \implies 2.4 = k^{\frac{1}{x}} \: --(1)

 ii) (0.24)^{y} = k \implies 0.24 = k^{\frac{1}{</p><p>y}} \: --(2)

 iii) (10)^{z} = k \implies 10 = k^{\frac{1}{z}} \: --(3)

/* Do (1) ÷ (3) , we get */

 \implies \frac{2.4}{10} = \frac{k^{\frac{1}{x}}}{k^{\frac{1}{z}}}

 \implies 0.24 = k^{\frac{1}{x} - \frac{1}{z}}

 \boxed{ \pink{ \because \frac{x^{m}}{x^{n}} = x^{m-n} }}

 \implies k^{\frac{1}{y}} = k^{\frac{1}{x} - \frac{1}{z}} \: \blue {[ From \: (2)] }

 \implies \frac{1}{y} = \frac{1}{x} - \frac{1}{z}

 \boxed{ \blue{ \because If \:a^m = a^n \implies m = n }}

 Hence, Proved

•••♪

Similar questions