If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying sin (2θ + 45°) = cos (30° − θ).
Answers
Answered by
13
SOLUTION :
Given : (2θ + 45°) & (30° + θ) and sin(2θ + 45°) = cos(30° + θ )
sin(2θ + 45°) = cos(30° + θ )
sin(2θ + 45°) = sin(90° −(30°−θ))
[sin(90° −θ ) = cos θ]
sin(2θ + 45°) = sin(90° − 30° + θ)
On equating both sides,
(2θ + 45°) = (60° + θ )
2θ - θ = 60° - 45°
θ = 15°
Hence, the degree measure of θ = 15°.
HOPE THIS ANSWER WILL HELP YOU…
Answered by
5
Here I am using A instead of theta.
Given (2A + 45) and (30 - A) are acute
angles.
*********************************
We know that ,
sin( 90 - A ) = cosA
*********************************
sin ( 2A + 45° ) = cos ( 30° - A )
=> sin( 2A + 45° ) = sin[ 90°-(30°-A)]
=> sin(2A+45°) = sin( 90° - 30° + A )
=> sin( 2A + 45° ) = sin ( 60° + A )
=> 2A + 45° = 60° + A
=> 2A - A = 60° - 45°
=> A = 15°
•••••
Given (2A + 45) and (30 - A) are acute
angles.
*********************************
We know that ,
sin( 90 - A ) = cosA
*********************************
sin ( 2A + 45° ) = cos ( 30° - A )
=> sin( 2A + 45° ) = sin[ 90°-(30°-A)]
=> sin(2A+45°) = sin( 90° - 30° + A )
=> sin( 2A + 45° ) = sin ( 60° + A )
=> 2A + 45° = 60° + A
=> 2A - A = 60° - 45°
=> A = 15°
•••••
Similar questions
Social Sciences,
7 months ago
English,
7 months ago
Math,
1 year ago
Math,
1 year ago
CBSE BOARD X,
1 year ago