Math, asked by premaneater, 7 hours ago

if (2-√5)+(3+2√5)-(4+√5)/4 = p+q√5, then value of p and q are​

Answers

Answered by talpadadilip417
11

Step-by-step explanation:

 \tt{ \implies \: \frac{ (2- \sqrt{ 5  }  )+(3+2 \sqrt{ 5  }  )-(4+ \sqrt{ 5  }  )  }{ 4  }  =p+q \sqrt{ 5  }}

 \tt{ \implies \:2-\sqrt{5}+3+2\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5}  }

 \tt{ \implies \:5-\sqrt{5}+2\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5}  }

 \tt{ \implies \:5+\sqrt{5}-\left(4+\sqrt{5}\right)=4p+4q\sqrt{5}  }

 \tt{ \implies5+\sqrt{5}-4-\sqrt{5}=4p+4q\sqrt{5} }

 \tt{ \implies \: 1+\sqrt{5}-\sqrt{5}=4p+4q\sqrt{5} }

 \tt{ \implies \: 1=4p+4q\sqrt{5} }

 \tt{ \implies \: 4p=1-4q\sqrt{5} }

 \tt{ \implies \:\frac{4p}{4}=\frac{-4\sqrt{5}q+1}{4}  }

 \tt{ \implies \:p=-\sqrt{5}q+\frac{1}{4}  }

Answer:

Step-by-step explanation:

hope it help you.

thanks

Answered by divyapakhare468
5

Answer:

given equation : \frac{(2-\sqrt{5}) + (3 + 2\sqrt{5}) - (4 + \sqrt{5} )  }{4} = p + q\sqrt{5}

Step-by-step explanation:

now , on  multiplying by 4 and solving we get ;

= 1 -\sqrt{5} + 2\sqrt{5} - \sqrt{5} = 4p +4q\sqrt{5}

1 = 4p +4q\sqrt{5}

4p = 1 -4q\sqrt{5}

p = \frac{1}{4} - q\sqrt{5}

q = \frac{\frac{1}{4} - p }{\sqrt{5} }

Similar questions