Math, asked by bhargavramambati, 7 months ago

if (2/5)^3*(2/5)^7=(2/5)^2x then find x​

Answers

Answered by pranamikabhuyan84
0

Answer:

The value of x is 11

Step-by-step explanation:

Given : (2x +3) : (3x +2) = 5:7

To find : Value of x

Solution :

(2x +3) : (3x +2) = 5:7(2x+3):(3x+2)=5:7

\frac{2x+3}{3x+2}=\frac{5}{7}

3x+2

2x+3

=

7

5

7(2x+3)=5(3x+2)7(2x+3)=5(3x+2)

14x+21=15x+1014x+21=15x+10

21-10=15x-14x21−10=15x−14x

11=x

Hence The value of x is 11

Answered by pulakmath007
20

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. \sf{ \:  {a}^{m}  \times  {a}^{n}   =  {a}^{m + n} \:  \: }

2. \sf \: { \:  {a}^{m}   =  {a}^{n} \: } \: implies \:  \: m = n

3. \sf{ \: {( {a}^{m}) }^{n}    =  {a}^{mn} \: }

GIVEN

 \sf{ \displaystyle \: \:  { \bigg( \:   \frac{2}{5}  \bigg)}^{3}   \times { \bigg( \:   \frac{2}{5}  \bigg)}^{7}   =  { \bigg( \:   \frac{2}{5}  \bigg)}^{2x}  \: }

TO DETERMINE

The value of x

EVALUATION

 \sf{ \displaystyle \: \:  { \bigg( \:   \frac{2}{5}  \bigg)}^{3}   \times { \bigg( \:   \frac{2}{5}  \bigg)}^{7}   =  { \bigg( \:   \frac{2}{5}  \bigg)}^{2x}  \: }

 \implies \:  \sf{ \displaystyle \: \:  { \bigg( \:   \frac{2}{5}  \bigg)}^{3 + 7}   =  { \bigg( \:   \frac{2}{5}  \bigg)}^{2x}  \: }

 \implies \:  \sf{ \displaystyle \: \:  { \bigg( \:   \frac{2}{5}  \bigg)}^{10}   =  { \bigg( \:   \frac{2}{5}  \bigg)}^{2x}  \: }

 \implies \:  \sf{ \displaystyle \: 2x = 10\: }

 \implies \:  \sf{ \displaystyle \: x = 5\: }

RESULT

  \boxed{\sf{  \: \:x = 5 \:  \:  }}

Similar questions