English, asked by ramv2048, 9 months ago

If, 2,5,8=122348, 3,5,4=181224, 7,4,6=352230, 5,3,10 =203340 then 3,9,4=?

Answers

Answered by ansh460
0

Answer:

♡Hello♡

Answer :

The roots of the quadratic equation,

\frac{1}{x} - \frac{1}{x - 2} = 3 \: are \: x = \frac{3 + \sqrt[1]{3} }{3} \: and \: x = \frac{3 - \sqrt[1]{3} }{3}x1−x−21=3arex=33+13andx=33−13

Explanation :

As given the equation in the form ,

\frac{1}{x}-\frac{1}{x-2} = 3x1−x−21=3

Simplify the above equation

=> (x-2)-x = 3x × (x-2)

=> x-2 - x = 3x² - 6x

=> 3x² - 6x + 2 = 0

As the equation is written in the form ax² + bx + c = 0

x =\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}x=2a−b±b2−4ac

a = 3 , b = -6 , c = 2

Put all the values in the above equation

x =\frac{-(-6)\pm\sqrt{(-6)^{2}-4\times 3\times 2}}{2\times 3}x=2×3−(−6)±(−6)2−4×3×2

x =\frac{6\pm\sqrt{36-24}}{6}x=66±36−24

x =\frac{6\pm\sqrt{12}}{6}x=66±12

x =\frac{6\pm2\sqrt{3}}{6}x=66±23

x =\frac{3\pm1\sqrt{3}}{3}x=33±13

Thus,

x =\frac{3+1\sqrt{3}}{3}x=33+13

x =\frac{3-1\sqrt{3}}{3}x=33−13

Therefore the roots of the quadratic equation \frac{1}{x}-\frac{1}{x-2} = 3x1−x−21=3 are x =\frac{3+1\sqrt{3}}{3}x=33+13 ,x =\frac{3-1\sqrt{3}}{3}x=33−13

\bold{\huge{\fbox{\color{Purple}{♡Thanks♡}}}}♡Thanks♡

Answered by Nitu9580342470
0

Answer:

Explanation:

2,5,8=122348and3,5,4=181224and7,4,6=352230and5,3,10=203340and3,9,4

Similar questions