Math, asked by faheemnasir976, 11 months ago

If 2^5^x÷2^x=5√32.then find the value of x​

Answers

Answered by Anonymous
11

\rule{200}3

\Huge{\red{\underline{\textsf{Answer}}}}

\large{\green{\underline{\tt{Given:-}}}} \sf \frac{2^{5x}}{2^x}\: = \: \sqrt[5]{32}

\rule{200}3

\large{\orange{\underline{\tt{To\:find:-}}}} \sf The\: value \:of \:x

\rule{200}3

\large{\red{\underline{\tt{Solution:-}}}}

\longrightarrow \sf 2^{5x-x}\: = \: \sqrt[5]{2^{5}}

\longrightarrow \sf 2^{4x}\: = \: 2^{\frac{5}{5}}

\longrightarrow \sf 4x\: = \:1 ( By equating the exponents)

\pink\longrightarrow \boxed{\pink{\sf \frac{1}{4}}} \orange\star

\rule{200}3

Answered by MissFADED
35

_________________________

\huge\tt{\underline{Solution:}}

 {2}^{5x}  \div  {2}^{x} =  \sqrt[5]{32}

 {2}^{5x - x}  =  \sqrt[5]{2 \times 2 \times 2 \times 2 \times 2 }

 {2}^{4x}  =  {2}^{1}

4x = 1

{\fbox {x = \frac{1}{4}}}

___________________________

Similar questions