Math, asked by sanjeevsharma61, 1 year ago

if 2^5x/2^x=5√32.then find the value of x.

Answers

Answered by sijasubbiah
24

\frac{2^{5x} }{2^{x} } = 5\sqrt{32} \\\frac{2^{5x} }{2^{x} } = 5\sqrt{2^{5} } \\\frac{2^{5x} }{2^{x} } = 5. 2^{\frac{1}{5} } \\\frac{2^{5x} }{2^{x} } . \frac{1}{2^{\frac{1}{5} } } = 5\\\frac{2^{5x} }{2^{x+\frac{1}{5} } } = 0\\\frac{5x}{x+\frac{1}{5} } = 0\\\\\\frac{x}{5x+1} =0\\x=0



sanjeevsharma61: bhai mujhe pura answer de
Answered by pinquancaro
12

The value of x is  \frac{1}{4}.

Step-by-step explanation:

Given : If \frac{ {2}^{5x} }{ {2}^{x} }=\sqrt[5]{32}

To find : The value of x ?

Solution :

\frac{ {2}^{5x} }{ {2}^{x} }=\sqrt[5]{32}

Using exponent rule, \frac{a^x}{a^y}=a^{x-y}

{2}^{5x - x} = \sqrt[5]{{2}^{5}}  

{2}^{4x}={2}^{\frac{5}{5}}  

{2}^{4x}={2}^{1}  

Now equating the exponents,

4x=1

x=\frac{1}{4}

Therefore, the value of x is  .

#Learn more

If a:b = c:d = e:f = 2:3 then find the value of (a+c+e)/(b+d+f)​

https://brainly.in/question/12792615

Similar questions