Math, asked by jasmine6463, 1 year ago

if √2+√7/√2-√7=a+b√14,find a,b​

Answers

Answered by sharmacarry398
1

Answer:

-9/5 -2/5√14 =a+b √14

a= -9/5,b= -2/5

Answered by AnkitaSahni
2

The value of a \: and \: b \:  are \: \frac{ - 9}{5} \:  and   \: \frac{ - 2  }{5} respectively

Given:

√2+√7/√2-√7=a+b√14

To Find:

a and b.

Solution:

To find the value of a and b we will follow the following steps:

As we know,

 \frac{ \sqrt{2}  +   \sqrt{7} }{ \sqrt{2}  -  \sqrt{7} }  = a + b \sqrt{14}

Multiplying the denominator and numerator of the left-hand side by the same numerator we get,

 \frac{ \sqrt{2}  +   \sqrt{7}  \times \sqrt{2}  +   \sqrt{7}}{ \sqrt{2}  -  \sqrt{7}  \times \sqrt{2}  +   \sqrt{7}}  = a + b \sqrt{14}

 \frac{ { (\sqrt{2 }  +  \sqrt{7} )}^{2} }{ { \sqrt{2} }^{2}  -  { \sqrt{7} }^{2}  }  = a + b \sqrt{14}

 \frac{2 + 2 \sqrt{2}  \sqrt{7}  + 7}{2 - 7}  = a  + b \sqrt{14}

 \frac{9 + 2 \sqrt{14} }{ - 5}  = a +b \sqrt{14}

  \frac{ - 9}{5} +  \frac{ - 2 \sqrt{14} }{5}  = a +b \sqrt{14}

On comparing both sides we get,

a \: and \: b \:  are \: \frac{ - 9}{5} \:  and   \: \frac{ - 2 }{5} respectively

Henceforth, the value of a \: and \: b \:  are \: \frac{ - 9}{5} \:  and   \: \frac{ - 2  }{5} respectively

#SPJ3

Similar questions