Math, asked by BGMIGAMER, 2 months ago

if 2^a=3^b=12^c prove that 1/b+2/a=1/c​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {2}^{a} =  {3}^{b}  =  {12}^{c}

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\dfrac{1}{b}  + \dfrac{2}{a}  = \dfrac{1}{c}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {2}^{a} =  {3}^{b}  =  {12}^{c}

Let assume that

\rm :\longmapsto\: {2}^{a} =  {3}^{b}  =  {12}^{c} = x

\rm :\longmapsto\: {2}^{a} = x

We know that

\boxed{ \rm{  {a}^{x} = y \rm \implies\:a =  {\bigg(y\bigg) }^{\dfrac{1}{x} } }}

So, using this

\rm :\implies\:2 =  {\bigg(x\bigg) }^{\dfrac{1}{a} }

Also,

\rm :\longmapsto\: {3}^{b} = x

\rm :\implies\:3 =  {\bigg(x\bigg) }^{\dfrac{1}{b} }

Also,

\rm :\longmapsto\: {12}^{c} = x

\rm :\implies\:12 =  {\bigg(x\bigg) }^{\dfrac{1}{c} }

\rm :\longmapsto\:2 \times 2 \times 3=  {\bigg(x\bigg) }^{\dfrac{1}{c} }

\rm :\longmapsto\:{\bigg(x\bigg) }^{\dfrac{1}{a} } \times {\bigg(x\bigg) }^{\dfrac{1}{a} } \times {\bigg(x\bigg) }^{\dfrac{1}{b} }  =  {\bigg(x\bigg) }^{\dfrac{1}{c} }

We know,

\boxed{ \rm{  {a}^{x} \times  {a}^{y} =  {a}^{x + y}}}

So, using this identity, we get

\rm :\longmapsto\:{\bigg(x\bigg) }^{\dfrac{1}{a} + \dfrac{1}{a}  + \dfrac{1}{b}  } = {\bigg(x\bigg) }^{\dfrac{1}{c} }

\rm :\longmapsto\:{\bigg(x\bigg) }^{\dfrac{2}{a} + \dfrac{1}{b}  } = {\bigg(x\bigg) }^{\dfrac{1}{c} }

We know,

\boxed{ \rm{  {a}^{x} =  {a}^{y} \rm \implies\:x = y}}

So,

\rm :\longmapsto\:\dfrac{1}{b}  + \dfrac{2}{a}  = \dfrac{1}{c}

Hence, Proved

Additional Information :-

\boxed{ \rm{  {a}^{x} \div  {a}^{y}  =  {a}^{x - y}}}

\boxed{ \rm{  {a}^{0} = 1}}

\boxed{ \rm{  {a}^{ - x} =  \frac{1}{ {a}^{x} } }}

\boxed{ \rm{  {a}^{x} \times  {b}^{x}  =  {(ab)}^{x}}}

\boxed{ \rm{  {a}^{ - 1} =  \frac{1}{a}}}

Similar questions