Math, asked by arminder0305, 9 months ago

if 2^a=3^b=6^c then show that c=ab/a+b​

Answers

Answered by shettysarvesh456
1

Answer:

2^a=3^b=6^c

Taking log we get

log2^a=log3^b=log6^c

Let it be k

Therefore,log2^a=log3^b=log6^c=k

  We know that loga^x = x*loga

   Therefore we can write the above equation has

      a*log2=b*log3=c*log6=k

Now,

a*log2=k  (1)

b*log3=k   (2)

c*log6=k   (3)

From (1), (2), (3) we get

a=k/log2  , log2=k/a

b=k/log3 , log3=k/b

c=k/log6  (6)

Here 6 can be written has 2*3

There fore log6=log(2*3)

So, c=k/log(2*3)

We know that log(a*b)=loga + logb

Therefore c=k/log2+log3

From (4),(5)

c=           k        

    [(k/a)+(k/b)]

c=     k    

    k(1/a+1/b)     (Here K gets cancelled)

Therefore,

c=    1    

      1/a+1/b

c=        1        

         a+b

          a*b

c=    ab  

       a+b​

Please mark me has brainlist

Answered by Aayati17
2

Answer:

Answer:

Very very very very good morning bro

\huge\pink{Good\:morning}Goodmorning

[tex]<html><body> <marquee style="z-index:2;position:absolute;left:18px;top:97px;font-family:Cursive;font-size:14pt;color:blue;height:200px;" scrollamount="3" direction="down">Good morning </marquee> <marquee style="z-index:2;position:absolute;left:1px;top:89px;font-family:Cursive;font-size:14pt;color:#ffcc00;height:100px;" scrollamount="7" direction="down">All Bihari</marquee> <marquee style="z-index:2;position:absolute;left:111px;top:7px;font-family:Cursive;font-size:16pt;color:red;height:302px;" scrollamount="4" direction="down">♥️Myself Aayati♥️</marquee> <marquee style="z-index:2;position:absolute;left:225px;top:83px;font-family:Cursive;font-size:14pt;color:blue;height:371px;" scrollamount="3" direction="down">++Alone angel ++</marquee> <marquee style="z-index:2;position:absolute;left:105px;top:53px;font-family:Cursive;font-size:14pt;color:#ffcc00;height:317px;" scrollamount="2" direction="down">Eklavya </marquee></body> </html>[/tex

/]

[tex] <marquee behaviour-move><font color="orange pink"><h1>Good morning bro </ ht></marquee>[/tex

Similar questions