Math, asked by IkshitaSalecha, 1 year ago

If 2^a = 3^b = 6^c then show that c = ab/a + c


Anonymous: Mark this Ans as brainlist if it helps you!-)

Answers

Answered by Anonymous
5

Answer \:  \:  \\  \\ 2 {}^{a}  = 3 {}^{b}  = 6 { }^{c}  = k \:  \:  \: let \\  \\ 2 {}^{a}  = k \:  \:  \:  \: 3 {}^{b}  = k \:  \:  \:  \:  \: 6 {}^{c}  = k \\  \\ 2 = k {}^{ \frac{1}{a} }  ....Equation \:  \: \:  \:i  \:  \: \\  \\ 3 = k {}^{ \frac{1}{b} } ....Equation \:  \:  \: ii \\  \\ 6 = k {}^{ \frac{1}{c} } ... \: Equation \:  \:  \: iii \\  \\ 6 = k {}^{ \frac{1}{c} }  \\  \\ 3 \times 2 = k {}^{ \frac{1}{c} }  \\  \\ k {}^{ \frac{1}{b} }  \times k {}^{ \frac{1}{a} }  = k {}^{ \frac{1}{c} }  \\  \\ compare \:  \:  powers \: of \: k \: we \: have \\  \\  \frac{1}{b}  +  \frac{1}{a}  =  \frac{1}{c}  \\  \\  \frac{a + b}{ab}  =  \frac{1}{c}  \\  \\ c =  \frac{ab}{a + b}  \:  \:  \: hence \:  \: proved

Similar questions