Math, asked by divya3353, 1 year ago

If 2^a = 3^b = 6^c then show that c = ab divide
a+b​

Answers

Answered by Nishitha0603
1

let \:  {2}^{a}  = k \\ 2 =  {k}^{ \frac{1}{a} }  \\ similarly \\ 3 =  {k}^{ \frac{1}{b} }  \\ 6 =   {k}^{ \frac{1}{c} }  \\ as \: 6 = {k}^{ \frac{1}{c} }  \\ 2 \times 3 =  {k}^{ \frac{1}{c} }  { \frac{}{} }^{}  \\  {k}^{ \frac{1}{a}  }  \times  {k}^{ \frac{1}{b} }  =  {k}^{ \frac{1}{c} }  \\  \frac{1}{a}  \times  \frac{1}{b}  =  \frac{1}{c}  \\ ab = c
hope this helps you

divya3353: thanks
Similar questions