If 2^a = 3^b = 6^c then show the relation between a,b and c
Answers
Answered by
0
heya....
Let 2^a=3^b=6^c =k
2 = k^(1/a), 3 = k^(1/b) and 6= k^(1/c)
2*3=6
k^(1/a)*k^(1/b) = k^(1/c)
k^(1/a +a/b)= k^(1/c)
1/a +a/b = 1/c
a+b/ab = 1/c
c= ab/a+b Hence, Proved.
tysm.....$gozmit
Let 2^a=3^b=6^c =k
2 = k^(1/a), 3 = k^(1/b) and 6= k^(1/c)
2*3=6
k^(1/a)*k^(1/b) = k^(1/c)
k^(1/a +a/b)= k^(1/c)
1/a +a/b = 1/c
a+b/ab = 1/c
c= ab/a+b Hence, Proved.
tysm.....$gozmit
Answered by
5
2^(a) = 3^(b) = 6^(c)
Let, they all are equal to Z
Z = 2^(a) = 3^(b) = 6^(c)
===================
Then,
Z = 2^(a)
Z^(1/a) = 2
-------------------------
Z = 3^b
Z^(1/b) = 3
-------------------
Z = 6^(c)
Z^(1/c) = 6
--------------------
=========================
Z^(1/a) × Z^(1/b) = Z^(1/c)
Z^(1/a + 1/b) = Z^(1/c)
(ab)/(a +b) = 1/c
(a +b) / ab = c
I hope this will help you
(-:
Let, they all are equal to Z
Z = 2^(a) = 3^(b) = 6^(c)
===================
Then,
Z = 2^(a)
Z^(1/a) = 2
-------------------------
Z = 3^b
Z^(1/b) = 3
-------------------
Z = 6^(c)
Z^(1/c) = 6
--------------------
=========================
Z^(1/a) × Z^(1/b) = Z^(1/c)
Z^(1/a + 1/b) = Z^(1/c)
(ab)/(a +b) = 1/c
(a +b) / ab = c
I hope this will help you
(-:
Similar questions