Math, asked by gs490741, 7 months ago

if 2^a=5^b=10^c prove that 1/a+1/b=1/c​

Answers

Answered by Arceus02
4

Answer:-

\sf{Let\:2^a = 5^b = 10^c = k}

\sf{\\}

So,

\sf{2^a = k}

\texttt{To the power 1/a both sides}

\longrightarrow \sf{2 = {k}^{\frac{1}{a}} \dots (i) }

\sf{\\}

And,

\sf{5^b = k}

\texttt{To the power 1/b both sides}

\longrightarrow \sf{5 = {k}^{\frac{1}{b}} \dots (ii)}

\sf{\\}

Similarly,

\sf{10^c = k}

\texttt{To the power 1/c both sides}

\longrightarrow \sf{10 = {k}^{\frac{1}{c}} \dots (iii) }

\sf{\\}

We know that,

\sf{2 * 5 = 10}

\longrightarrow \sf{ {k}^{\frac{1}{a}} * {k}^{\frac{1}{b}} = {k}^{\frac{1}{c}} \quad \quad [From\:(i),\:(ii),\:and\:(iii)] }

\longrightarrow \sf{ {k}^{\frac{1}{a} + \frac{1}{b}} = {k}^{\frac{1}{c}} }

As the bases are same,

\longrightarrow \underline{ \underline{ \green{\sf{ \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{1}{c} }}}}

Similar questions