Math, asked by kk8593998, 1 month ago

If 2 and 0 are the zeros of the polynomial f(x)=2x3-5x2+ax+b then find the value of a and b remainder 5 and 19 respectively.find the value of a and b .Hence,find the remainder when p(x) is dived by (x-2).​

Answers

Answered by trollrishi
1

When f(x) is divided by x-1 and x+1 the remainder are 5 and 19 respectively.

∴f(1)=5 and f(−1)=19

⇒(1)

4

−2×(1)

3

+3×(1)

2

−a×1+b=5

and (−1)

4

−2×(−1)

3

+3×(−1)

2

−a×(−1)+b=19

⇒1−2+3−a+b=5

and 1+2+3+a+b=19

⇒2−a+b=5 and 6+a+b=19

⇒−a+b=3 and a+b=13

Adding these two equations, we get

(−a+b)+(a+b)=3+13

⇒2b=16⇒b=8

Putting b=8 and −a+b=3, we get

−a+8=3⇒a=−5⇒a=5

Putting the values of a and b in

f(x)=x

4

−2x

3

+3x

2

−5x+8

The remainder when f(x) is divided by (x-2) is equal to f(2).

So, Remainder =f(2)=(2)

4

−2×(2)

3

+3×(2)

2

−5×2+8=16−16+12−10+8=10

Mark me as brianlist

Answered by IIBandookbaazII
2

When f(x) is divided by x-1 and x+1 the remainder are 5 and 19 respectively.

∴f(1)=5 and f(−1)=19

⇒(1)

4

−2×(1)

3

+3×(1)

2

−a×1+b=5

and (−1)

4

−2×(−1)

3

+3×(−1)

2

−a×(−1)+b=19

⇒1−2+3−a+b=5

and 1+2+3+a+b=19

⇒2−a+b=5 and 6+a+b=19

⇒−a+b=3 and a+b=13

Adding these two equations, we get

(−a+b)+(a+b)=3+13

⇒2b=16⇒b=8

Putting b=8 and −a+b=3, we get

−a+8=3⇒a=−5⇒a=5

Putting the values of a and b in

f(x)=x

4

−2x

3

+3x

2

−5x+8

The remainder when f(x) is divided by (x-2) is equal to f(2).

So, Remainder =f(2)=(2)

4

−2×(2)

3

+3×(2)

2

−5×2+8=16−16+12−10+8=10

Similar questions