Math, asked by madhumoomal20092005, 10 months ago

If 2 and 1 are roots of quadratic equation ax^2+bx+2=0 , then find value of a and b

Answers

Answered by ishwarsinghdhaliwal
3

If 2 and 1 are roots of quadratic equation,then

x=2,1

we can write it as

(x-2)(x-1)=0

x²-x-2x+2=0

x²-3x+2=0

Comparing the given polynomial ax²+ bx +2=0 with x²-3x+2=0, we get

a=1 and b=-3

Answered by silentlover45
0

 Given:-

  •  2 \: \: and \: \: 1 \: \: are \: \: roots \: \: of \: \: quadratic \: \: equation \: \: {ac}^{2} \: + \: {bx} \: + \: {2} \: = \: 0

 To \: \: Find:-

  •  Value \: \: a \: \: and \: \: b

 Solutions:-

  •  roots \: = \: 2 \: \: and \: \: 1

 \: \: \: \: \:  So, \: \: x \: \: = \: \: 2 \: \: or \: \: x \: \: = \: \: 1

 \: \: \: \: \: p \: (x) \: \: = \: \: {ax}^{2} \: + \: {bx} \: + \: 2

 \: \: \: \: \: putting \: \: value \: \: of \: \: x \: \: = \: \: 2 \: \: in \: \: the \: \: given \: \: quadratic \: \: equation.

⇢ \: {ax}^{2} \: + \: {bx} \: + \: 2 \: = \: 0

⇢ \: a \: × \: {2}^{2} \: + \: {b} \: × \: {2} \: + \: {2} \: = \: 0

⇢ \: {4a} \: + \: {2b} \: + \: {2} \: = \: 0

 \: \: \: \: \:  divide \: \: both \: \: side \: \: by \: \: 2

 \: \: \: \: \:  2a \: + \: b \: = \: - \: 1 \: \: \: .....(1).

 \: \: \: \: \: putting \: \: value \: \: of \: \: x \: \: = \: \: 1 \: \: in \: \: the \: \: given \: \: quadratic \: \: equation.

⇢ \: {ax}^{2} \: + \: {bx} \: + \: 2 \: = \: 0

⇢ \: a \: × \: {1}^{2} \: + \: {b} \: × \: {1} \: + \: {2} \: = \: 0

 \: \: \: \: \: a \: + \: b \: = \: - \: 2 \: \: \: .....(2).

 \: \: \: \: \: from \: \: Eq. \: (1). \: \: and \: \: (2).

 2a \: + \: b \: = \: - \: 1

 a \: + \: b \: = \: - \: 2

\: - \: \: \: - \: \: = \: \: \: -

____________

 \: \: \: \: \: \: \: \: \: a \: \: = \: \: 1

 \: \: \: \: \:  putting \: \: the \: \: value \: \: a \: \: = \: \: 1 \: \: in \: \: Eq. \: (1)</p><p>

⇢ 2a \: + \: b \: = \: - \: 1

⇢ 2 \: × \: {1} \: + \: b \: = \: - \: 1

⇢ 2 \: + \: b \: = \: - \: 1

⇢ b \: = \: - \: 1 \: - \: 2

⇢ b \: = \: - \: 3

 \: \: \: \: \: \: a \: \: = \: \: - \: 1 \: \: \: and \: \: \: b \: \: = \: \: - \: 3

 \: \: \: \: \: Verification:-

 \: \: \: \: \: p \: (x) \: \: = \: \: {ax}^{2} \: + \: {bx} \:  + \: 2

\: \: \: \: \: putting \: \: value \: \: of \: \: a \: \: and \: \: b

⇢ p \: (x) \: \: = \: \: {x}^{2} \: - \: {3x} \: + \: 2

⇢ {x}^{2} \: - \: {x} - \: {2x} \: + \: 2

⇢ {x} \: (x \: - \: 1) \: - \: 2 \: (x \: - \: 1)

⇢ (x \: - \: 2) \: \: \: (x \: - \: 1)

  \: \: \: \: \: So, \: \: we \: \: get \: \: the \: \: same \: \: zeroes \: \: 2 \: \: and \: \: 1 \: \: that \: \: are \: \: mentioned \: \: in \: \: the \: \: Questions.

 hence \: \: verified.

______________________________________

Similar questions