Math, asked by madhumoomal20092005, 9 months ago

If 2 and 1 are roots of quadratic equation ax^2+bx+2=0 , then find value of a and b

Answers

Answered by Anonymous
6

 \large\bf\underline{Given:-}

  • 2 and 1 are the roots of the quadratic equation ac² + bx + 2 = 0

 \large\bf\underline {To \: find:-}

  • Value a and b

 \huge\bf\underline{Solution:-}

roots = 2 and 1

  • so, x = 2 or x = 1

★ p(x) = ax² + bx + 2

putting value of x = 2 in the given quadratic equation.

 \dashrightarrow \rm \: a {x}^{2}  + bx + 2 = 0 \\  \\  \dashrightarrow \rm \: a \times  {2}^{2}  + b \times 2 + 2 = 0 \\  \\  \dashrightarrow \rm \: 4a + 2b  + 2 = 0 \\  \\  \rm \dag \: divide \: both \: side \: by \: 2 \\  \\  \dashrightarrow \rm \: 2a + b  =  - 1......(i)

putting x = 1 in the given quadratic equation.

 \dashrightarrow \rm \:  {ax}^{2}  + bx + 2 = 0 \\  \\  \dashrightarrow \rm \: a  \times {1}^{2}  + b \times 1 + 2 = 0 \\  \\  \dashrightarrow \rm \: a + b  =  - 2........(ii)

From eq. (i) and (ii) .

 \rm \: 2a + b =  - 1 \\  \rm \:  \:  \: a + b =  - 2 \\  \:  \:  \:  -  \:  \:  \:  -   \:  \:  \:  \:  \:  +  \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \rm \:  \: a \:  \:  \:  \:  \:  \:  \:  \:  = 1 \\  \\  \rm \dag \: putting \: value \: of \: a = 1 \: in \: eq.(i) \\  \\  \rm \rightarrowtail \: 2a + b =  - 1 \\  \\   \rm \rightarrowtail2 \times 1 + b =  - 1 \\  \\   \rm \rightarrowtail2 + b =  - 1 \\  \\   \rm \rightarrowtail \: b =  - 1 - 2 \\  \\   \rm \rightarrowtail \: b =  - 3

So,

 \bf \star \:  a = 1 \: and \: b =  - 3

\underline{\bf\bigstar \: Verification:-}

 \longmapsto  \rm \: p(x) = a {x}^{2}  + bx + 2 = 0 \\  \\  \rm \:  \: putting \: value \: of \: a \: and \: b \\  \\ \longmapsto  \rm \: p(x) =  {x}^{2}   - 3x + 2 \\  \\ \longmapsto  \rm \:  {x}^{2}  - x - 2x + 2 \\  \\ \longmapsto  \rm \: x(x - 1) - 2(x - 1) \\  \\ \longmapsto  \rm \: (x - 2)(x - 1) \\  \\ \longmapsto  \bf\: x = 1 \: or \: x \:  = 2

So, we get the same zeroes 2 and 1 that are mentioned in the Question.

hence Verified

Answered by Anonymous
1

Given :

The polynomial is a(x)² + bx + 2 and their roots are 2 and 1

To Find :

The value of a and b

Solution :

Since , 2 and 1 are the roots of given polynomial

Thus ,

a(2)² + b(2) + 2 = 0

4a + 2b + 2 = 0

2a + b + 1 = 0

2a + b = -1 ----- (i)

and

a(1)² + b(1) + 2 = 0

a + b + 2 = 0

a + b = -2 ------- (ii)

Multiply eq (ii) by 2 , we get

2a + 2b = -4

Subtract eq (i) from eq (ii) , we get

2a + 2b - (2a + b) = -4 - (-1)

2b - b = -3

b = -3

Put the value of b = -3 in eq (ii) , we get

a + (-3) = -2

a = -2 + 3

a = 1

 \therefore \sf \underline{The \:  value \:  of \:  a \:  and \:  b \:  are \:  1  \: a nd  -3}

Similar questions