Math, asked by shekharshukla823, 10 months ago

If 2 and -2are the two zeros of the polynomial 2x4 -5x3 -11x2 +20x +12. Find all the zeros of the given polynomial

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{2 and -2 are the two zeros of the polynomial}\mathsf{2x^4-5x^3-11x^2+20x+12}

\underline{\textbf{To find:}}

\textsf{All the zeroes of the given polynomial}

\underline{\textbf{Solution:}}

\textsf{Let the other two zeroes be m and n}

\mathsf{Then,}

\mathsf{Sum\;of\;zeroes=\dfrac{-b}{a}}

\mathsf{2+(-2)+m+n=\dfrac{-(-5)}{2}}

\mathsf{m+n=\dfrac{5}{2}} --------(1)

\mathsf{Product\;of\;zeroes=\dfrac{e}{a}}

\mathsf{(2)(-2)(m)(n)=\dfrac{12}{2}}

\mathsf{-4mn=6}

\mathsf{mn=\dfrac{-6}{4}}

\mathsf{mn=\dfrac{-3}{2}}--------(2)

\textsf{Using (1) in (2), we get}

\mathsf{m\left(\dfrac{5}{2}-m\right)=\dfrac{-3}{2}}

\mathsf{\dfrac{5}{2}m-m^2=\dfrac{-3}{2}}

\mathsf{\dfrac{5}{2}m-m^2+\dfrac{3}{2}=0}

\mathsf{m^2-\dfrac{5}{2}m-\dfrac{3}{2}=0}

\mathsf{2m^2-5m-3=0}

\mathsf{2m^2-6m+m-3=0}

\mathsf{2m(m-3)+1(m-3)=0}

\mathsf{(2m+1)(m-3)=0}

\implies\mathsf{m=\dfrac{-1}{2},3}

\mathsf{when\,m=\dfrac{-1}{2},\;\;m\left(\dfrac{-1}{2}\right)=\dfrac{-3}{2}\;\implies\;n=3}

\mathsf{when\,m=3,\;\;m(3)=\dfrac{-3}{2}\;\implies\;n=\dfrac{-1}{2}}

\therefore\textbf{All the zeroes of the given polynnomial are}

\boxed{\mathsf{2,-2,\dfrac{-1}{2},3}}

Similar questions