If 2 and -3 are the zeroes of polynomial x^2-(a+1)x+b then find the value of a and b
Answers
Step-by-step explanation:
Solution:-
Given 2 and -3 are the zeroes of polynomial
f(×)=x²-(a+1)x+b
first take x=2 , we get
now put the value of x=2 on given polynomial :-x²-(a+1)x+b
f(2)=(2)²-(a+1)×2+ b
0=4-2a+2+b
0=6-2a+b
2a-b=6 ..............(i)eq
now take x= -3
put the value of x= -3 on given polynomial:-x²-(a+1)x+b
f(-3)= (-3)²-(a+1)×-3+b
0=9-a×(-3)+1×-3 +b
0=9+3a-3+b
0= 6+3a+b
3a+b= -6 ................(ii) eq
we have two unknown value and two equation
using substitution method
2a-b=6 .........(i) eq
3a+b= -6 .........(ii) eq
now find the value of b from i st equation
2a-b=6
-b=6-2a
b= -(6-2a)
put the value of b on (ii) eq
3a+b = -6
3a-6+2a= -6
5a= -6+6
5a =0
a =0
now put the value of a=0 on b,we ger
b= -6+2a
b= -6+2×0
b= -6