Math, asked by genius4544, 6 months ago

If-2 and 3 are the zeroes of the quadratic polynomial x + (p + 1)x +q, then find the value of p​

Answers

Answered by snehitha2
7

Correct question :

If -2 and 3 are the zeroes of the quadratic polynomial x² + (p + 1)x +q, then find the value of p​.

Answer :

p = -2

Step-by-step explanation :

Given polynomial,

 p(x) = x² + (p + 1)x + q

  • -2 is a zero

Since, -2 is a zero of the polynomial;

   substitute x = -2 and the result is zero.

i.e., p(-2) = 0

 (-2)² + (p + 1)(-2) + q = 0

  4 - 2p - 2 + q = 0

    2 - 2p + q = 0

       2p - q = 2  --- [ 1 ]

  • 3 is a zero

Since, 3 is a zero of the polynomial;

        substitute x = 3 and the result is zero.

i.e., p(3) = 0

 (3)² + (p + 1)(3) + q = 0

 9 + 3p + 3 + q = 0

  12 + 3p + q = 0

   3p + q = -12 --- [ 2 ]

Add equations [1] and [2]

  2p - q + 3p + q = 2 - 12

   5p = -10

      p = -10/5

      p = -2

∴ The value of p is -2.

_______________________

                          [ OR ]

we know,

Relationship between zeroes and coefficients :

  ⇒ Sum of zeroes = -(x coefficient)/x² coefficient

  ⇒ Product of zeroes = constant term/x² coefficient

Given polynomial,

 x² + (p + 1)x + q

⇒ x² coefficient = 1

    x coefficient = (p + 1)

    constant term = q

-2 and 3 are zeroes of the polynomial,

Sum of zeroes = -(p + 1)/1

            - 2 + 3 = -p - 1

                  1 = -p - 1

                 - p = 1 + 1

                 - p = 2

                   p = -2

The value of p is -2

Similar questions