Math, asked by kunalsaraswat009, 4 days ago

If 2 and -3 are the zeroes of the quadratic polynomial x²+(a+1)x+b, then find the values of a and b.If 2 and -3 are the zeroes of the quadratic polynomial x²+(a+1)x+b, then find the values of a and b.​

Answers

Answered by TheBrainliestUser
140

 \small{ \sf{Given:  \:  \: 2  \:  \: and \:  \:  -3 \:  \:  are \:  \:  the \:  \:  zeroes \:  \:  of \:  \:  the \:  \:   }}

 \small{ \sf{quadratic \:  \:  polynomial \:  \:  {x}^{2} + (a + 1)x + b. }}

 \small{\sf{ To  \:  \: Find:  \:  \: The  \:  \: values  \:  \: of \:  \:  a \:  \:  and \:  \:  b.}}

 \small{\sf{ In \:  \:  quadratic \:  \:  polynomial:  \:  \: {x}^{2} + (a + 1)x + b}}

 \small{\sf{ Putting \:  \:  the \:  \:  value \:  \: 2.}}

 \tt{ \mapsto \:  \:  \: {{2}^{2} + (a + 1)2 + b = 0}}

 \tt{ \mapsto \:  \:  \: {4 + 2a + 2 + b = 0}}

 \tt{ \mapsto \:  \:  \: {6 + 2a + b = 0}}

 \tt{ \mapsto \:  \:  \: {b = - 2a - 6}}

 \small{\sf{ Putting \:  \: the \:  \: value \:  \: - 3.}}

 \tt{ \mapsto \:  \:  \: {{(- 3)}^{2} + (a + 1)(-3) + b = 0}}

 \tt{ \mapsto \:  \:  \: {9 - 3a - 3 + b = 0}}

 \tt{ \mapsto \:  \:  \: {6 - 3a + b = 0}}

 \tt{ \mapsto \:  \:  \: {b = 3a - 6}}

 \small{\sf{ Comparing \:  \: equation \:  \: (i) \:  \: and \:  \: (ii).}}

 \tt{ \mapsto \:  \:  \: {- 2a - 6 = 3a - 6}}

 \tt{ \mapsto \:  \:  \: {- 2a - 3a = - 6 + 6}}

 \tt{ \mapsto \:  \:  \: {- 5a = 0}}

 \mapsto \:  \:  \: {\boxed{ \tt{a = 0}}}

 \small{\sf{ Putting \:  \: the \:  \: value \:  \: in \:  \: equation \:  \: (i).}}

 \tt{ \mapsto \:  \:  \: {b = - 2(0) - 6}}

 \tt{ \mapsto \:  \:  \: {b = 0 - 6}}

 \mapsto \:  \:  \: {\boxed{ \tt{b =  - 6}}}

 \small{\sf{ Hence,}}

 \small{\sf{ The \:  \: values \:  \: of \:  \: a \:  \: and \:  \: b \:  \: are \:  \: 0 \:  \: and \:  \: - 6 \:  \: respectively.}}

Answered by Itzheartcracer
115

Given :-

If 2 and -3 are the zeroes of the quadratic polynomial x²+(a+1)x+b,

To Find :-

Value of a and b

Solution :-

α + β = -b/a

It may be also written as -(α + β)

-(α + β) = b/a

-[2 + (-3)] = a + 1/1

-[2 - 3] = a + 1

-[-1] = a + 1

1 = a + 1

a = 1 - 1

a = 0

Now

αβ = c/a

2 × (-3) = b/1

-6 = b

Hence

Value of a is 0 and b is -6

Similar questions