Math, asked by swarishreddy01, 13 hours ago

If 2 and -3 are the zeroes of the quadratic polynomial x²+(a+1)x+b, then find the values of a and b.If 2 and -3 are the zeroes of the quadratic polynomial x²+(a+1)x+b, then find the values of a and b.​

Answers

Answered by InvisiblePrince
18

GivEn :

  • 2 & -3 are Zeroes of Polynomial x²+(a+1)x+b .

To Find :

  • Value of a & b ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀✠ G I V E NP O L Y N O M I A L : x² + ( a + 1 ) x + b

⌑ By Comparing the given polynomial with Standard Quadratic equation (ax² + bx + c = 0), we get —

  • a = 1 ,
  • b = ( a + 1 ) &
  • c = b

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

⠀✇ Now , Finding Value of a and b :

\dag\frak{\underline { As, \:We \:know \:that\::\:}}\\

  • { α + β } = – b/ a
  • { α β } = c/a

\qquad \qquad\qquad \dag\underline {\: \pink{\pmb {\:\sf Sum \: of \:roots \:\:\big\{ \alpha + \beta \:\big\} \:\:}}}\\

\qquad \qquad \twoheadrightarrow \tt { \:\:\big\{ \alpha + \beta \:\big\} \:=\:\dfrac{-\:b}{a}\:}\\

\qquad \qquad \twoheadrightarrow \tt { \:\:\big\{ 2 + ( -3 )  \:\big\} \:=\:\dfrac{-\:( a + 1 )}{1}\:}\\

\qquad \qquad \twoheadrightarrow \tt { \:\:\big\{ 2 - 3   \:\big\} \:=\:\dfrac{- a - 1 )}{1}\:}\\

\qquad \qquad \twoheadrightarrow \tt { \:\:\big\{ 2 - 3   \:\big\} \:=\:\dfrac{- a - 1 )}{1}\:}\\

\qquad \qquad \twoheadrightarrow \tt { \:\: -1 \:=\:\dfrac{- a - 1 )}{1}\:}\\

\qquad \qquad \twoheadrightarrow \tt { \:\: -a  \:=\:\dfrac{ 1 - 1 )}{1}\:}\\

\qquad \qquad \twoheadrightarrow \underline {\pmb{\boxed  {\tt { \purple { \:\: a  \:=\:0\:}}}}}\:\:\bigstar \\

\qquad \qquad\qquad \dag\underline {\: \pink{\pmb {\:\sf Product \: of \:roots \:\:\big\{ \alpha  \beta \:\big\} \:\:}}}\\

\qquad \qquad \twoheadrightarrow \tt { \:\:\big\{ \alpha  \beta \:\big\} \:=\:\dfrac{\:c}{a}\:}\\

\qquad \qquad \twoheadrightarrow \tt { \:\:\big\{ 2 \:\times ( -3 )  \:\big\} \:=\:\dfrac{\:b}{1}\:}\\

\qquad \qquad \twoheadrightarrow \tt { \:\: -6 \:=\:\:b\:}\\

\qquad \qquad \twoheadrightarrow\underline{ \pmb{\boxed {\tt { \purple { \:\: b  \:=\:-6\:}}}}}\:\:\bigstar \\

\qquad \therefore \:\:\underline {\sf \:Hence \:Values \:of \:a \: and \:b \:are \:\pmb{\sf 0 }\:and \:\pmb{ \sf -6 }\:,respectively \:.}\\

Similar questions