Math, asked by sagarmaurya010, 3 months ago

if -2 and 3 are the zeroes of the quadratic polynomial x²+(p+1)x+q, then find the values of p and q​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

  • -2 and 3 are the zeroes of the quadratic polynomial x² + (p + 1) x + q

\large\underline{\sf{To\:Find - }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: values \: of \: p \: and \: q

\large\underline{\sf{Solution-}}

We know that

 \sf \: If \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) =  {ax}^{2}  + bx + c \:  \: then

\boxed{\red{\sf Sum\ of\ the\ zeroes \:  =  \alpha  +  \beta =\dfrac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

OR

\boxed{\purple{\tt Sum\ of\ the\ zeroes =  \alpha +   \beta =\dfrac{-b}{a}}}

And

\boxed{\red{\sf Product\ of\ the\ zeroes =  \alpha  \beta =\dfrac{Constant}{coefficient\ of\ x^{2}}}}

OR

\boxed{\purple{\tt Product\ of\ the\ zeroes =  \alpha  \beta =\dfrac{c}{a}}}

Now,

Given quadratic polynomial is

 \:  \:  \:  \:  \:  \:  \:  \:  \bull  \:  \: \sf \: f(x) \:  =  \:  {x}^{2}  + (p + 1)x + q

↝ On Comparing with ax² + bx + c, we get

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: a \:  =  \: 1

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: b \:  =  \: p + 1

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: c \:  =  \: q

↝ Aɢᴀɪɴ,

↝ -2 and 3 are the zeroes of the quadratic polynomial x² + (p + 1)x + q,

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \:  \alpha  =  -  \: 2

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \:  \beta  \:  =  \: 3

Now,

\rm :\longmapsto\: \alpha  +  \beta  =  -  \: \dfrac{b}{a}

\rm :\longmapsto\: - 2 + 3 =  -  \: \dfrac{(p + 1)}{1}

\rm :\longmapsto\:1 =  - p - 1

\bf\implies \:p \:  =  \:  -  \: 2

Also,

\rm :\longmapsto\: \alpha  \beta  = \dfrac{c}{a}

\rm :\longmapsto\:( - 2) \times 3 = \dfrac{q}{1}

\bf\implies \:q =  -  \: 6

\overbrace{ \underline { \boxed { \bf \therefore \: The \: value \: of \:p =  - 2 \:  \: and \:  \: q =  - 6}}}

Answered by abhi569
0

Answer:

p = -2   and q = - 6

Step-by-step explanation:

If -2 and 3 are the zeroes of the given polynomial(and be 0), these must satisfy the equation for x = -2 and x = 3.

 For x = - 2 :  f(-2) = 0

⇒ (-2)² +  (p + 1)(-2) + q = 0

⇒ 4 - 2p - 2 + q = 0

2p - 2 = q            

For x = 3 :   f(3) = 0

⇒ (3)² + (p + 1)(3) + q = 0

⇒ 9 + 3p + 3 + q = 0

⇒ 12 + 3p + (2p - 2) = 0

⇒ p = - 2

  thus. 2(-2) - 2 = q = - 6

Similar questions