Math, asked by sukriti220606, 6 hours ago

if -2 and -6 are the zeros of polynomial x⁴+x³-34x²-4x+120 , find the other two zeroes
(don't write useless things)​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) =  {x}^{4} +  {x}^{3} - 34 {x}^{2} - 4x + 120

and

\rm :\longmapsto\: - 2 \: and \:  - 6 \: are \: zeroes \: of \: f(x)

\rm :\implies\:(x + 2) \: and \: (x + 6) \: are \: factors \: of \: f(x)

\rm :\implies\:(x + 2) \: (x + 6) \: is \: factors \: of \: f(x)

\rm :\implies\: {x}^{2}  + 8x + 12\: is \: factors \: of \: f(x)

So, By long division we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \:  \:  \:  \:  {x}^{2}  \:  - 7x +  \: 10 \:  \:  \:  \: \:\:}}}\\ {{\sf{ {x}^{2} +8x + 12}}}& {\sf{\: {x}^{4} + {x}^{3} - {34x}^{2} - 4x +120\:}} \\{\sf{}}&\underline{\sf{\: \:  \:  { - x}^{4} -  {8x}^{3} - 12{x}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\: \:  - 7 {x}^{3}  - {46x}^{2} - 4x + 120 \:\:}}\\{\sf{}}&\underline{\sf{{7x}^{3} + {56x}^{2} + 84x \:  \:  \:  \: \:\:}}\\{\sf{}}&{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {10x}^{2}  + 80x + 120 \:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   { -10x}^{3} { - 80x}- 120\:\:}}\\{\sf{}}&\underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:0\:\: \:  \:  \:  \:  \:  \:  \:  \: }}\end{array}\end{gathered}\end{gathered}\end{gathered}

We know,

Dividend = Divisor × Quotient + Remainder

\bf\implies \: {x}^{4} +  {x}^{3} -  {34x}^{2} - 4x + 120

\: \rm \:  = \:( {x}^{2} + 8x + 12)( {x}^{2} - 7x + 10)

\: \rm \:  = \:( {x}^{2} + 8x + 12)( {x}^{2} - 5x  - 2x+ 10)

\: \rm \:  = \:( {x}^{2} + 8x + 12)( {x}(x - 5) - 2(x - 5))

\: \rm \:  = \:( {x}^{2} + 8x + 12)(x - 5)(x - 2)

\bf\implies \:Remaining \: zeroes \: of \: f(x) = 2, \: 5

Additional Information :-

 \red{\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c \: then \:}

 \boxed{ \sf{ \:  \alpha  +  \beta  =  -  \frac{b}{a}}}

and

 \boxed{ \sf{ \:  \alpha\beta  =  \frac{c}{a}}}

 \red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3} + b {x}^{2}  + cx + d \: then \:}

 \boxed{ \sf{ \:  \alpha + \beta +  \gamma   =  -  \frac{b}{a}}}

 \boxed{ \sf{ \:  \alpha   \beta +  \beta  \gamma  +  \gamma  \alpha  =  \frac{c}{a}}}

 \boxed{ \sf{ \:  \alpha \beta \gamma   =  -  \frac{d}{a}}}

Similar questions