If 2 boys and 2 girls are to be arranged in a row so that the girls are not next to each other, how many possible arrangements are there?
a) 3
b) 6
c) 12
d) 24
Content Quality Required
rakeshmohata:
a is the answer
Answers
Answered by
18
Let boys are B1 , B2 and girls are G1 and G2.
1. B1 , G1 , B2 , G2
2. B2, G1 , B1 , G2
3. B1 , G2 , B2 , G1
4. B2 , G2 , B1 , G1
5. G1 , B1 , B2 , G2
6. G1 , B2 , B1 , G2
7. G2 , B1 , B2 , G1
8. G2 , B2 , B1 , G1
9. G1 , B1 , G2 , B2
10. G2 , B1 , G1 , B2
11. G2 , B2 , G1 , B1
12. G1 , B2 , G1 , B1.
So , in 12 ways this arrangement can be done.
1. B1 , G1 , B2 , G2
2. B2, G1 , B1 , G2
3. B1 , G2 , B2 , G1
4. B2 , G2 , B1 , G1
5. G1 , B1 , B2 , G2
6. G1 , B2 , B1 , G2
7. G2 , B1 , B2 , G1
8. G2 , B2 , B1 , G1
9. G1 , B1 , G2 , B2
10. G2 , B1 , G1 , B2
11. G2 , B2 , G1 , B1
12. G1 , B2 , G1 , B1.
So , in 12 ways this arrangement can be done.
Answered by
11
-G-G-
2 Girls can sit in any of the 2 places in 2P2 ways.
= > 2! ways.
= > 2!/(2 - 2)!
= > 2!/0!
= > 2!
= > 2.
Now,
2 boys can sit in the remaining 3 places in 3P2 ways
= > 3!/(3 - 2)!
= > 3!/(1)!
= > 3!
= > 6.
Therefore the total number of ways = 2 * 6
= 12.
Hope this helps!
2 Girls can sit in any of the 2 places in 2P2 ways.
= > 2! ways.
= > 2!/(2 - 2)!
= > 2!/0!
= > 2!
= > 2.
Now,
2 boys can sit in the remaining 3 places in 3P2 ways
= > 3!/(3 - 2)!
= > 3!/(1)!
= > 3!
= > 6.
Therefore the total number of ways = 2 * 6
= 12.
Hope this helps!
Similar questions