Math, asked by hasini4697, 1 day ago

if 2-cos^2θ=3sinθcosθ,where sinθ ≠ cosθ the value of tanθ is​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm \: sin\theta   \ne \: cos\theta   \: \rm\implies \:tan\theta   \:  \ne \: 1 \\

and

\rm \: 2 -  {cos}^{2}\theta = 3sin\theta  cos\theta   \\

can be rewritten as

\rm \: 1 + 1-  {cos}^{2}\theta = 3sin\theta  cos\theta   \\

We know,

\boxed{ \rm{ \: {sin}^{2}\theta +  {cos}^{2}\theta = 1 \: }} \\

So, using this, we get

\rm \: 1 + {sin}^{2}\theta = 3sin\theta  cos\theta   \\

can be further rewritten as

\rm \: \dfrac{1 +  {sin}^{2} \theta  }{ {cos}^{2} \theta  }  = \dfrac{3sin\theta  cos\theta  }{ {cos}^{2}\theta  }  \\

\rm \:\dfrac{1}{ {cos}^{2} \theta} +  \dfrac{{sin}^{2} \theta  }{ {cos}^{2} \theta  }  = \dfrac{3sin\theta}{cos\theta}  \\

\rm \:  {sec}^{2}\theta +  {tan}^{2}\theta  = 3tan\theta   \\

We know,

\boxed{ \rm{ \: {sec}^{2}\theta  -  {tan}^{2}\theta  = 1 \: }} \\

So, using this, we get

\rm \:  1 + {tan}^{2}\theta +  {tan}^{2}\theta  = 3tan\theta   \\

\rm \:  2{tan}^{2}\theta + 1= 3tan\theta   \\

\rm \:  2{tan}^{2}\theta  - 3tan\theta + 1 = 0   \\

\rm \:  2{tan}^{2}\theta  - 2tan\theta - tan\theta + 1 = 0   \\

\rm \: 2tan\theta(tan\theta - 1) - 1(tan\theta   - 1) = 0 \\

\rm \: (tan\theta - 1)(2tan\theta   - 1) = 0 \\

\rm\implies \:2tan\theta   - 1 = 0 \:  \: as \: tan\theta \: \ne \: 1

\rm\implies \:\boxed{ \bf{ \:tan\theta  \:  =  \:  \frac{1}{2}  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 } \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Anonymous
4

\huge\blue{ANSWER:-}

Given, 2−cos²θ=3sinθcosθ

Dividing both sides by cos²θ, we get

2sec²θ−1=3tanθ

2(1+tan²θ)−1=3tanθ

⇒2+2tan²θ−1=3tanθ

⇒2tan²θ−3tanθ+1=0

⇒2tan²θ−2tanθ−tanθ+1=0

⇒2tanθ(tanθ−1)−(tanθ−1)=0

⇒(2tanθ−1)(tanθ−1)=0

⇒tanθ=1/2 and 1

I hope you have understood the ans yaar❤️

Similar questions