If 2 cos θ = 2-sin θ. Then what is the value of cos θ ?
Answers
Answered by
11
From given :-
2cos¢ = 2 - sin¢
2 - 2cos¢ = sin¢
squaring on both side ^^
we get ,
(2- 2cos¢ )² = (sin¢ )²
4 + 4cos²¢ - 8cos¢ = sin²¢
4 + 4cos²¢ - 8cos¢ - sin²¢ =0
4cos²¢ - sin²¢ - 8cos¢ + 4 =0
4cos²¢ - ( 1 - cos²¢ ) - 8cos¢ + 4 =0
4cos²¢ - 1 + cos²¢ - 8cos¢ + 4 =0
5cos²¢ - 8 cos¢ + 3 = 0
just using this term as quadratic equation .. just imagine cos¢ = x
then we get
5cos²¢ - 5co¢¢ - 3cos¢ + 3 = 0
5 cos¢ ( cos¢ - 1 ) - 3 ( cos¢ - 1 ) = 0
( 5cos¢ - 3) ( cos¢ - 1 ) = 0
<< [taking common terms]
( 5cos¢ - 3) = 0
cos¢ = 3/5
and similarly ..
cos¢ - 1 = 0
cos¢ = 1
Hence, cos¢ = 1 and 3/5 Answer ✔
_________________________
Anonymous:
nhi mene phele θ ka value nikal liya
Answered by
5
Your answer is ---
we have ,
2 cosθ = 2 - sinθ
taking square both side, we get
4 cos^2θ = 4 + sin^2θ - 4sinθ
as cos^2θ = (1-sin^2θ)
4(1 - sin^2θ) = 4 + sin^2θ - 4sinθ
=> 4 - 4sin^2θ = 4 + sin^2θ - 4sinθ
adding - 4 + 4sin^2θ both side , we get
=> 0 = 5sin^2θ - 4sinθ
=> sinθ (5sinθ - 4 ) = 0
=> 5sinθ - 4 = 0
=> sinθ = 4/5
=> sinθ = sin53° [ °•° sin53° = 4/5 ]
=> θ = 53°
So, cos53° = 3/5
Hence, cosθ = 3/5
【 Hope it helps you 】
we have ,
2 cosθ = 2 - sinθ
taking square both side, we get
4 cos^2θ = 4 + sin^2θ - 4sinθ
as cos^2θ = (1-sin^2θ)
4(1 - sin^2θ) = 4 + sin^2θ - 4sinθ
=> 4 - 4sin^2θ = 4 + sin^2θ - 4sinθ
adding - 4 + 4sin^2θ both side , we get
=> 0 = 5sin^2θ - 4sinθ
=> sinθ (5sinθ - 4 ) = 0
=> 5sinθ - 4 = 0
=> sinθ = 4/5
=> sinθ = sin53° [ °•° sin53° = 4/5 ]
=> θ = 53°
So, cos53° = 3/5
Hence, cosθ = 3/5
【 Hope it helps you 】
Similar questions
English,
8 months ago
Social Sciences,
8 months ago
Hindi,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago