Math, asked by Jayyy1056, 11 months ago

If 2 cos square theta - 5 cos theta + 2 is equal to zero then the value of cos theta + cot theta

Answers

Answered by Anonymous
52

Answer:

\underline{\bigstar\:\:\textsf{First Part of the Question :}}

:\implies\sf 2\cos^2(\theta)-5\cos(\theta)+2=0\\\\\\:\implies\sf 2\cos^2(\theta)-(4+1)\cos(\theta)+2=0\\\\\\:\implies\sf 2\cos^2(\theta)-4\cos(\theta)-\cos(\theta)+2=0\\\\\\:\implies\sf 2\cos(\theta)(\cos(\theta)-2)-1(\cos(\theta)-2)=0\\\\\\:\implies\sf (2\cos(\theta)-1)(\cos(\theta)-2)=0\\\\\\:\implies\sf \cos(\theta)=\dfrac{1}{2}\quad or\quad \cos(\theta)=2\\\\{\scriptsize\qquad\bf{\dag}\:\:\texttt{we will take $\tt\frac{1}{2}$, as range of $\cos$ is from -1 to 1.}}\\\\:\implies\sf \cos(\theta)=\dfrac{1}{2}\\\\{\scriptsize\qquad\bf{\dag}\:\:\tt{\cos\:60^{\circ}=\frac{1}{2}}}\\\\:\implies\sf \cos(\theta)=\cos(60^{\circ})\\\\\\:\implies\underline{\boxed{\sf\theta=60^{\circ}}}

\rule{150}{1}

\underline{\bigstar\:\:\textsf{According to the Question :}}

\dashrightarrow\sf\:\:\cos(\theta)+\cot(\theta)\\\\\\\dashrightarrow\sf\:\:\cos(60^{\circ})+\cot(60^{\circ})\\\\\\\dashrightarrow\sf\:\:\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\\\\\\\dashrightarrow\sf\:\:\dfrac{1}{2} +\dfrac{\sqrt{3}}{3}\\\\\\\dashrightarrow\:\:\underline{\boxed{\textsf{\textbf{$\dfrac{ \text3\:\text+\:\text2\sqrt{\text3}}{\text6}$}}}}

Answered by Anonymous
12

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

✺ Answer :---

\implies\ \ {2\cos^2\theta-5\cos\theta+2=0}

\implies\ \ {2\cos^2\theta-(4+1)\cos\theta+2=0}

\implies\ \ {2\cos^2\theta-4\cos\theta-\cos\theta+2=0}

\implies\ \ {2\cos\theta(\cos\theta-2)-1(\cos\theta-2)=0}

\implies\ \ {(\cos\theta-2)(2\cos\theta-1)=0}

So , either ,

\blacksquare\:\:\:\ \ {(\cos\theta-2)=0}

\longrightarrow\ \ {\cos\theta=2}

Or,

\blacksquare\:\:\:\ \ {(2\cos\theta-1)=0}

\longrightarrow\ \ {2\cos\theta=1}

\longrightarrow\ \ {</p><p>\cos\theta=\dfrac{1}{2}}

Now \small{\text{from the definition of}   \cos\theta \text{ we know that,}}

 \setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.08mm}\multiput(0,0)(1,0){41}{\line(0,1){40}}\multiput(0,0)(0,1){41}{\line(1,0){40}}\linethickness{0.4 mm}\put(5,0){\line(0,1){40}}\put(0,20){\line(1,0){40}}\put(5,25){\circle*{0.5}}\put(10,20){\circle*{0.5}}\put(25,20){\circle*{0.5}}\put(30,20){\circle*{0.5}}\put(40,20){\circle*{0.5}}\qbezier(5,25)(8,24)(10,20)\qbezier(10,20)(15,10)(20,20) \qbezier(20,20)(25,30)(30,20)\qbezier(30,20)(35,10)(40,20)\large{\put(2.7,24){$1$}}\large{\bf{\put(0.7,14){$-1$}}}\put(3,18){$0$}\huge{\put(17,35){$\cos\theta$}}\end{picture}

\blacksquare\:\:\:\red{ - 1 \leqslant  \cos \theta \leqslant  + 1}

✏ so we will take the value of ,

\longrightarrow\ \ {</p><p>\cos\theta=\dfrac{1}{2}}

\longrightarrow\ \ {</p><p>\cos\theta=\cos60\degree}

\longrightarrow\ \ {\boxed{\theta=60\degree}}

\ \ {\cos\theta+\cot\theta}

\implies\ \ {\cos60\degree+\cot60\degree}

\implies\ \ {\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}}

\implies\ \ {\dfrac{\sqrt{3}+2}{2\sqrt{3}}}

\implies\ \ {\large{\dfrac{2+\sqrt{3}}{2\sqrt{3}}}}

\implies\ \ {\large{\dfrac{(2+\sqrt{3})\times\sqrt{3}}{2\sqrt{3}\times\sqrt{3}}}}

\implies\ \ {\bf{\large{\dfrac{2\sqrt{3}+3}{6}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions