Math, asked by Bharathnihan5257, 1 month ago

If 2 cos theta=x+1/x prove that 2 cos 2theta=x^2+1/x^2

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\:2cos\theta  = x + \dfrac{1}{x}

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:{ \bf{ \: 2cos2\theta  = {x}^{2} + \dfrac{1}{ {x}^{2} }  }}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:2cos\theta  = x + \dfrac{1}{x}

Now,

Consider,

\rm :\longmapsto\:2cos2\theta

We know,

\boxed{ \bf{ \: cos2x =  {2cos}^{2}x - 1}}

So, using this identity, we get

\rm \:  =  \: 2 \times  ({2cos}^{2}\theta  - 1)

\rm \:  =  \:  {4cos}^{2}\theta  - 2

\rm \:  =  \:  {(2cos\theta )}^{2}  - 2

We have given that,

\rm :\longmapsto\:\boxed{ \bf{ \: 2cos\theta  = x + \dfrac{1}{x} }}

So, on substituting this value, we get

\rm \:  =  \:  {\bigg(x + \dfrac{1}{x}  \bigg) }^{2}  - 2

We know,

\boxed{ \bf{ \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

So, using this identity, we get

\rm \:  =  \:  {x}^{2} + \dfrac{1}{ {x}^{2} }  + 2 \times \cancel{ x} \times \dfrac{1}{ \cancel{x}}  - 2

\rm \:  =  \:  {x}^{2} + \dfrac{1}{ {x}^{2} }  + \cancel 2   -  \cancel2

\rm \:  =  \:  {x}^{2} + \dfrac{1}{ {x}^{2} }

Hence,

\bf\implies \:\boxed{ \bf{ \: 2cos2\theta  = {x}^{2} + \dfrac{1}{ {x}^{2} }  }}

Additional Information :-

\boxed{ \bf{ \: sin2x = 2sinxcosx}}

\boxed{ \bf{ \: sin2x =  \frac{2tanx}{1 +  {tan}^{2} x} }}

\boxed{ \bf{ \: tan2x =  \frac{2tanx}{1 -  {tan}^{2} x} }}

\boxed{ \bf{ \: cos2x =  {cos}^{2}x -  {sin}^{2}x}}

\boxed{ \bf{ \: cos2x = 1 -  2{sin}^{2}x}}

\boxed{ \bf{ \: cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2}x } }}

\boxed{ \bf{ \: sin3x = 3sinx -  {4sin}^{3}x}}

\boxed{ \bf{ \: cos3x =  {4cos}^{3}x - 3cosx}}

Answered by oOosnowflakeoOo
2

Step-by-step explanation:

 {x}^{2}  +  \frac{1}{2x}

Similar questions