if 2 cos y=x+1/x, prove that cos 2y=1/2(x^2+1/x^2)
❎❎No spam❎❎
Answers
_____________________________
y = cosB + i sinB & cosB – isinB
If x = cosA + i sinA then 1/x = cosA – i sinA ;
y = cosB + i sinB then 1/y cosB – isinB
x + 1/x = 2cosA => cosA = 1/2(x + 1/x)
x – 1/x = 2i sinA => sinA = 1/2i(x – 1/x)
y + 1/y = 2cosB => cosB = 1/2(y + 1/y)
y – 1/y = 2i sinB => sinB = 1/2i(y – 1/y)
2cos(A + B) = 2(cosA cosB – sinA sinB)
= 2[1/2(x + 1/x) * 1/2(y + 1/y) – 1/2i(x – 1/x) * 1/2i(y – 1/y)]
= 2[1/4(xy + x/y + y/x + 1/xy + xy -x/y – y/x + 1/xy)]
= xy + 1/xy
Ans: xy + 1/xy
hope this helps!
plz mark as brain liest ✌️
Answer !!
y = cosB + i sinB & cosB – isinB
If x = cosA + i sinA then 1/x = cosA – i sinA ;
y = cosB + i sinB then 1/y cosB – isinB
x + 1/x = 2cosA => cosA = 1/2(x + 1/x)
x – 1/x = 2i sinA => sinA = 1/2i(x – 1/x)
y + 1/y = 2cosB => cosB = 1/2(y + 1/y)
y – 1/y = 2i sinB => sinB = 1/2i(y – 1/y)
2cos(A + B) = 2(cosA cosB – sinA sinB)
= 2[1/2(x + 1/x) * 1/2(y + 1/y) – 1/2i(x – 1/x) * 1/2i(y – 1/y)]
= 2[1/4(xy + x/y + y/x + 1/xy + xy -x/y – y/x + 1/xy)]
= xy + 1/xy
Ans: xy + 1/xy