Math, asked by aman59215, 11 months ago

if 2 is a zero of polynomial p(x)=ax2 -3(a+2)-4 then the value of a is ​

Answers

Answered by paytmM
246

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

Given Equations :-

\:p(x)\:=\:ax^2-3(a+2)-4.

➡Find Here :-

\:Value\:Of\:a.

\large{\underline{\underline{\mathfrak{\green{\sf{Explanation:-}}}}}}.

We know, if 2 is a zero of this equations , so,

x=2, satisfies of this equations .

So, Keep x=2 ,

\implies\:p(2)\:=a*2^2-3(a+2)-4\:=\:0.

\implies\:4a^2-3a-10\:=\:0.

\implies\:4a^2-8a+5a-10\:=\:0.

\implies\:4a(a-8)+5(a-2)\:=\:0.

\implies\:(4a+5)(a-8)\:=0.

\implies\:(4a+5)\:=0\:,Or\:(a-8)\:=0.

\implies\:a\:=\frac{-5}{4}\:Or\:a\:=\:8.

____________________

Answered by pulakmath007
1

The value of a = 10

Given :

2 is a zero of polynomial p(x) = ax² - 3(a + 2) - 4

To find :

The value of a

Solution :

Step 1 of 2 :

Write down the given polynomial

Here the given polynomial is

p(x) = ax² - 3(a + 2) - 4

Step 2 of 2 :

Find the value of a

Since 2 is a zero of polynomial p(x) = ax² - 3(a + 2) - 4

\displaystyle \sf{ \therefore \: p(2) = 0  }

\displaystyle \sf{ \implies a \times  {2}^{2}  - 3(a + 2) - 4 = 0}

\displaystyle \sf{ \implies 4a - 3a  - 6- 4 = 0}

\displaystyle \sf{ \implies a  - 10 = 0}

\displaystyle \sf{ \implies a  = 10}

Hence the required value of a = 10

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if polynomial p(t)=t⁴-t³+t²+6,then find p(-1)

https://brainly.in/question/3539645

2. Find the value of the polynomial 2x + 5 at x = – 3

https://brainly.in/question/50335429

#SPJ3

Similar questions