Math, asked by rahilpatel1303, 1 month ago

if 2 is added to a fraction ,it will become 9÷11 . if 3 is added to the same fraction ,it will be 5÷6 .find the fraction​

Answers

Answered by Anonymous
2

Answer:

A fraction becomes 9/11 if 2 is added to both numerator and denominator. If 3 is added to both numerator and denominator it becomes 5/6, find the fraction by substitution method. Hence, the fraction is 7/9.

Step-by-step explanation:

Answered by SachinGupta01
8

\bf \underline{ \underline{\maltese\:Given} }

 \sf A  \: fraction \:  becomes \:  \dfrac{9}{11}  \:  if  \: 2 \:  is  \:added \: in \:   both \:  the \:  numerator \:  and  \: denominator.

 \sf  If  \: 3 \:  is  \: added  \: to \:  both \:  the  \: numerator  \: and \:  denominator \:  it \:  becomes \:  \dfrac{5}{6}

\bf \underline{ \underline{\maltese \: To  \: find } }

 \sf \implies  Original  \: fraction =  \: ?

\bf \underline{ \underline{\maltese \: Solution } }

 \sf Let  \: the \:  numerator \:  be  \: x,

 \sf  Let  \: the \:  denominator  \: be  \: y,  \:  \: fraction =  \dfrac{x}{y}

 \rm \underline{First \:  case  \:  \: [When  \: 2 \:  is \:  added \:  in \:  both]}

 \sf \implies  \dfrac{x + 2}{y + 2} =  \dfrac{9}{11}

 \rm Solve \:  for  \: y

 \sf \implies  9(y + 2) = 11(x + 2)

 \sf \implies  9y + 18= 11x + 22

 \sf \implies  9y  = 11x + 22 - 18

 \sf \implies  9y  = 11x +4

 \sf \implies  y  =  \dfrac{11x}{9}  +  \dfrac{4}{9}

 \rm \underline{Second  \:  case  \:  \: [When  \: 3 \:  is \:  added \:  in \:  both]}

 \sf \implies  \dfrac{x + 3}{y + 3} =  \dfrac{5}{6}

 \rm Solve \:  for  \: x

 \sf \implies  6(x + 3) = 5(y + 3)

 \sf \implies  6x +18 = 5y + 15

 \sf \implies 5y = 6x + 3

 \sf \implies y =  \dfrac{6x + 3}{5}

 \sf \implies y = \dfrac{6x}{5} +  \dfrac{3}{5}

 \sf \implies \dfrac{11x}{9}  +   \dfrac{4}{9}   =  \dfrac{6x}{5} +  \dfrac{3}{5}

 \sf \implies \dfrac{11x + 4}{9}   =   \dfrac{6x + 3}{5}

 \sf \implies 5(11x + 4) = 9(6x + 3)

 \sf \implies 55x + 20 = 54x + 27

 \sf \implies 55x + 20  - 54x = 27

 \sf \implies x  + 20 = 27

 \sf \implies x   = 27 - 20

 \sf \implies x   = 7 \:  \:  (N umerator)

 \sf  Put \:  the  \: value  \: of \:  x  \: in  \:  \bigg(  y  =  \dfrac{11x}{9}  +  \dfrac{4}{9} \bigg) \: to \:  get \:  denominator.

\sf \implies  y  =  \dfrac{11x}{9}  +  \dfrac{4}{9}

\sf \implies  y  =  \dfrac{11 \times 7}{9}  +  \dfrac{4}{9}

\sf \implies  y  =  \dfrac{77 + 4}{9}

\sf \implies  y  = \cancel  \dfrac{81}{9}

\sf \implies  y  = 9 \:  \: (Denominator)

 \sf  \underline{Therefore, \:  value  \: of \:  x = 7 \:  and \:  y  = 9 }

 \underline{ \boxed{ \bf \red{Hence, \:  original  \: fraction = \dfrac{7}{9} }}}

Similar questions