Math, asked by saramaryam, 10 months ago

if 2 is added to both the numerator and denominator then the new fraction becomes 9/11 if 3 is added to both numerator and denominator , it becomes 5/6 find the fraction​

Answers

Answered by Cynefin
25

━━━━━━━━━━━━━━━━━━━━

Required Answer:

♦️ GiveN:

  • When 2 is added to both numerator and denominator, fraction becomes 9/11
  • When 3 is added to both numerator and denominator, fraction becomes 5/6

♦️ To FinD:

  • The original fraction....?

━━━━━━━━━━━━━━━━━━━━

How to solve ?

The question is mentioning a fraction, so it would have numerator and denominator which are unknown, So we can take two variables ( Let x and y) for the numerator and denominator respectively. Then, we will frame two equations and solving simultaneously.

━━━━━━━━━━━━━━━━━━━━

Solution:

We have consider numerator as x and denominator as y

Then the fraction would be x/y

Case-1: When 2 is added,

  • New numerator = x + 2
  • New Denominator = y + 2

\large{\underline{\red{\rm{According \:to \:question}}}}

\large{ \rm{ \longrightarrow \:  \frac{x + 2}{y + 2}  =  \frac{9}{11}}} \\  \\   \dag{\rm{ \green{ \: cross \: multiplying}}} \\  \\  \large{ \rm{ \longrightarrow \: 11(x + 2) = 9(y + 2)}} \\  \\  \large{ \rm{ \longrightarrow \: 11x + 22 = 9y + 18}} \\  \\  \large{ \rm{ \longrightarrow \: 11x - 9y = 18 - 22}} \\  \\  \large{ \rm{ \longrightarrow \: 11x - 9y =  - 4..............(1)}}

Case-2: When 3 is added,

  • New numerator = x + 3
  • New denominator = y + 3

\large{\underline{\red{\rm{According \:to \:question}}}}

\large{ \rm{ \longrightarrow \:  \frac{x + 3}{y + 3}  =  \frac{5}{6}}} \\   \\  \large{ \rm{ \longrightarrow \: 6(x + 3) = 5(y + 3)}} \\  \\  \large{ \rm{ \longrightarrow \: 6x + 18 = 5y + 15}} \\  \\  \large{ \rm{ \longrightarrow \: 6x - 5y =  15 - 18}} \\  \\  \large{ \rm{ \longrightarrow \: 6x - 5y =  - 3.............(2)}}

From (1), we can write it as

 \large{ \rm{ \longrightarrow \: 11x =  - 4 + 9y}} \\  \\  \large{ \rm{ \longrightarrow \: x =  \frac{9y - 4}{11} }}

Substitute x in eq.(2)

 \large{ \rm{ \longrightarrow \: 6( \frac{9y - 4}{11}) - 5y =  - 3}} \\  \\   \large{ \rm{ \longrightarrow \:  \frac{54y - 24}{11} - 5y =  - 3}} \\  \\  \large{ \rm{ \longrightarrow \:  \frac{54y - 24 - 55y}{11} =  - 3}} \\  \\   \large{ \rm{ \longrightarrow \:   \frac{ - y - 24}{11}  =  - 3}} \\  \\   \rm{ \dag{ \green{cross \: multiplying}}} \\  \\  \large{ \rm{ \longrightarrow \:  - y - 24 =  - 33}} \\  \\  \large{ \rm{ \longrightarrow \:  - y =  - 33 + 24}} \\  \\  \large{ \longrightarrow{ \boxed{ \rm{ \red{y = 9}}}}}

Putting the value of y in eq.(1),

 \large{ \rm{ \longrightarrow \: x =  \frac{9y - 4}{11}}} \\  \\  \large{ \rm{ \longrightarrow \: x =  \frac{9(9) - 4}{11} }} \\  \\   \large{ \rm{ \longrightarrow \: x =  \frac{77}{11}}} \\  \\   \large{ \longrightarrow{ \boxed{ \rm{ \red{x = 7}}}}}

Hence, The fraction is \Large{\rm{\frac{7}{9}}}

 \large{ \rm{ \therefore{ \underline{ \green{Hence  \: solved \:  \dag}}}}}

━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
14

hope it helps you mate ((:

Attachments:
Similar questions