If -2 is smaller than (x^2-5)≤3 then the range of x is, where ( ) represents greatest integer function
Answers
Answered by
1
Given info : -2 is smaller than [x² - 5]≤ 3 then the range of x is ... Where [.] represents greatest integer function.
Solution : here, -2 < [x² - 5] ≤ 3
Case 1 : [x² - 5] ≤ 3
we know, [x ± k] = [x] ± k, for any integer k
⇒[x²] - 5 ≤ 3
⇒[x²] ≤ 8
we know, if [x] ≤ k ⇒x < k + 1 , where k ∈ Z
so, [x²] ≤ 8 ⇒x² < 8 + 1 = 9
⇒x² < 9
⇒-3 < x < 3
Case 2 : [x² - 5] > -2
⇒[x²] - 5 > -2
⇒[x²] > 3
We know, [x] > k ⇒x ≥ k + 1, where k ∈ Z
so, [x²] > 3 ⇒x² ≥ 3 + 1 = 4
⇒x² ≥ 4
⇒x ≥ 2 or x ≤ -2
Taking common values of case 1 and case 2 we get, 2 ≤ x < 3 or -3 < x ≤ -2
therefore the value of x ∈ [2, 3) U (-3, -2]
Similar questions