Math, asked by UtkarM, 1 year ago

if 2 ki power x is equal to 3 ki power Y is equal to 6 ki power minus Z then prove that 1 upon X + 1 upon y + 1 upon z =0.


GUYS PLEASE SEND FAST.IT'S. URGENT.

THE FIRST ANSWER WILL BE MARKED AS BRAINLIEST.

Answers

Answered by piyushgoyal1496
66
2
 2  ^{x}  = 3 {}^{y }
3 {}^{y}  = 6 { }^{ - z}
2 {}^{x}  = k {}^{ \times \frac{1}{x} }
3 {}^{y}  = k \times \frac{1}{y}
6 {}^{ - z}   = k \times \frac{ - 1}{z}
2
2 {}^{x}  \times 3  {}^{y}  = 6 {}^{ - z}
k
k \times \frac{1}{x}  \times k \times \frac{1}{y}  = k \times \frac{ - 1}{z}
 \frac{1}{x}  +   \frac{1}{y}  =  \frac{ - 1}{z}
 \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}  = 0


UtkarM: thanks bhai
Answered by kumawatshree27
2

Answer:

2 ^{x} = 3 {}^{y } 2

x

=3

y

3 {}^{y} = 6 { }^{ - z} 3

y

=6

−z

2 {}^{x} = k {}^{ \times \frac{1}{x} } 2

x

=k

×

x

1

3 {}^{y} = k \times \frac{1}{y} 3

y

=k×

y

1

6 {}^{ - z} = k \times \frac{ - 1}{z} 6

−z

=k×

z

−1

2

2 {}^{x} \times 3 {}^{y} = 6 {}^{ - z} 2

x

×3

y

=6

−z

k

k \times \frac{1}{x} \times k \times \frac{1}{y} = k \times \frac{ - 1}{z} k×

x

1

×k×

y

1

=k×

z

−1

\frac{1}{x} + \frac{1}{y} = \frac{ - 1}{z}

x

1

+

y

1

=

z

−1

\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0

x

1

+

y

1

+

z

1

=0

Similar questions