If 2^m+n / 2^n-m = 16 & a = 2^1/10 then a^2m+n-p / (am-2n+2p)^-1
Answers
Answer:
Step-by-step explanation:
If 2^m+n / 2^n-m = 16 & a = 2^1/10 then a^2m+n-p / (am-2n+2p)^-1
=> m = 2
Step-by-step explanation:
If 2^m+n / 2^n-m = 16 & a = 2^1/10 then a^2m+n-p / (am-2n+2p)^-1
\begin{gathered}\frac{2^{m+n}}{2^{n-m}} = 16\\ \\\implies 2^{m + n - n + m} = 2^4 \\ \\\implies 2^{2m} = 2^4 \\ \\\implies 2m = 4 \\\end{gathered}
2
n−m
2
m+n
=16
⟹2
m+n−n+m
=2
4
⟹2
2m
=2
4
⟹2m=4
=> m = 2
\begin{gathered}\frac{(a^{2m+n-p})^2}{(a^{m -2n + 2p})^{-1}} \\ \\\implies a^{2m+n-p} \times a^{2m+n-p} \times a^{m -2n + 2p} \\ \\\implies a^{2m + n - p + 2m + n - p + m - 2n + 2p} \\ \\\implies a^{5m} \\ \\m =2\\ \\\implies a^{10} \\\end{gathered}
(a
m−2n+2p
)
−1
(a
2m+n−p
)
2
⟹a
2m+n−p
×a
2m+n−p
×a
m−2n+2p
⟹a
2m+n−p+2m+n−p+m−2n+2p
⟹a
5m
m=2
⟹a
10
\begin{gathered}a = 2^{\frac{1}{10}}\\ \\\implies a^{10} = (2^{\frac{1}{10}})^{10} = 2\end{gathered}
a=2
10
1
⟹a
10
=(2
10
1
)
10
=2