Math, asked by sumitkushwahji12, 11 months ago

if 2 minus root 3 is a root of quadratic equation X square + 2 ( root3 - 1) X + 3 - 2 root 3 equals to zero then the second root is​

Answers

Answered by Sharad001
50

Answer :-

\implies \boxed{ \sf{ \beta =  -  \sqrt{3} }} \:  \\  \: \leadsto \bf{ other \: root \: is \:  -  \sqrt{3} }

To Find :-

→ Other root of given quadratic equation .

Explanation :-

According to the question ;

 \to \sf{ 2 -  \sqrt{3}  \:  \: is \: a \: root \: of \: } \\  \to \sf{ {x}^{2}  + 2( \sqrt{3}  - 1)x + 3 -  \sqrt{3}  = 0} \:   \\ \\  \sf{ let \:  \:  \:  \alpha \:  \: and \:  \beta \: are \: the \: roots \: of \:} \\  \sf{ given \: equation \: \: } \\

We know that ;

 \to  \boxed{\sf{ sum \: of \: roots =  \frac{ - cofficient \: of \: x}{ coefficient \: of \:  {x}^{2} } }} \\  \\  \therefore \:  \\  \implies \sf{ \:  \alpha +  \beta =  \frac{ - 2( \sqrt{3} - 1) }{1} } \\  \\  \because  \boxed{\sf{ \alpha = 2 -  \sqrt{3} } \:  \: (given \: root)} \\  \\  \therefore \:  \\  \implies \: 2 -  \sqrt{3}  +  \beta =  - 2 \sqrt{3}  + 2 \\  \\  \implies \:  \beta = 2 - 2 \sqrt{3}  - 2 +  \sqrt{3}  \\  \\  \implies \boxed{ \sf{ \beta =  -  \sqrt{3} }}

Hence other root of given quadratic equation is -√3 .

Verification :-

Replace all x to -√3

 \to \:  {( -  \sqrt{3}) }^{2}  + 2( \sqrt{3}  - 1)( -  \sqrt{3} ) + 3 - 2 \sqrt{3}  = 0 \\  \\  \to \: 3   - (2 \sqrt{3}  - 2)( \sqrt{3} ) + 3 - 2 \sqrt{3} = 0  \\  \\  \to \: 3 - 6 + 2 \sqrt{3}  + 3 - 2 \sqrt{3}  = 0 \\  \\  \to \: 6 - 6 = 0 \\  \\  \to \: 0 = 0

Hence verified .

Answered by sarikapilot548
0

Hii guys ❣️❣️

Step-by-step explanation:

First root is given in question - 2-√3

We have to find second root - ?

So, we can say α = 2-√3

And

β = ?

I hope this is helpful for you

Please mark me as brilliant

..................

Attachments:
Similar questions