Math, asked by affanfarook6870, 1 year ago

If 2 power x+y = 2 power x-y = √8 then the value of y is?

Answers

Answered by princisingh007
52

Answer:It is 0.

Step-by-step explanation:=> 2power x+y= √8

=> 2power x+y=2power 3/2

=> x+y=3/2 [1]

=>2power x-y=2power 3/2

=>x-y=3/2 [2]

Add both eq.=

=>2x=6/2

=>x=3/2

In eq. 1=

=>3/2+y=3/2

=>y=0

Answered by visalavlm
6

Answer:

The value of 'y' is equal to zero.

Step-by-step explanation:

Given that (2)^{x+y} =(2)^{x-y} =\sqrt{8}

We have to find the value of 'y'

(2)^{x+y} = (√8) = (8)^{\frac{1}{2} } =(2^{3} )^{\frac{1}{2} } =(2)^{\frac{3}{2} }

if (x)ᵃ = (x)ᵇ

⇒ a = b (∵ bases are same then powers are equal.)

(2)^{x+y} = (2)^{\frac{3}{2} }

x+y = \frac{3}{2} --------------(1)

(2)^{x-y} = \sqrt{8\\}  \\(2)^{x-y} =(8)^{\frac{1}{2} }

(2)^{x-y} =(2^{3} )^{\frac{1}{2} } =(2)^{\frac{3}{2} }

⇒x - y = \frac{3}{2} -----------(2)

Adding equation(1) and equation(2)

(x + y) + (x - y) =  \frac{3}{2} +  \frac{3}{2}

x + y + x - y = \frac{6}{2}

2x = 3

x =  \frac{3}{2}

Put x= \frac{3}{2}  in equation(1)

\frac{3}{2} + y =  \frac{3}{2}

y =  \frac{3}{2} -  \frac{3}{2}  = 0

Therefore, y = 0

Similar questions