Math, asked by ria298, 1 year ago

If 2/root 3 +root 5 add 5/root 3 - root 5 = a root3 + b root5, find a and b.​

Attachments:

Answers

Answered by Anonymous
23

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\large{\boxed{ \tt a =  -  \dfrac{7}{2} , \: b =  -  \dfrac{3}{2} }}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :-

\tt \dfrac{2}{ \sqrt{3} +  \sqrt{5}} +  \dfrac{5}{ \sqrt{3} -  \sqrt{5}} = a \sqrt{3} + b \sqrt{5}

To find :- Values of a and b

Solution :-

\tt \dfrac{2}{ \sqrt{3} +  \sqrt{5}} +  \dfrac{5}{ \sqrt{3} -  \sqrt{5}} = a \sqrt{3} + b \sqrt{5}

Consider Left Hand Side of the equation

\tt \dfrac{2}{ \sqrt{3} +  \sqrt{5}} +  \dfrac{5}{ \sqrt{3} -  \sqrt{5}}

Now rationalise the denominators of each term in the above expression

\tt  = (\dfrac{2}{ \sqrt{3} +  \sqrt{5}} \times  \dfrac{ \sqrt{3} -  \sqrt{5}  }{ \sqrt{3} -  \sqrt{5}  })+  (\dfrac{5}{ \sqrt{3} -  \sqrt{5}} \times  \dfrac{ \sqrt{3} +  \sqrt{5} }{ \sqrt{5} +  \sqrt{5} })

\tt =  \dfrac{2( \sqrt{3} -  \sqrt{5})}{ {( \sqrt{3})}^{2} -  {( \sqrt{5})}^{2}  } +  \dfrac{5( \sqrt{3} +  \sqrt{5})}{ {( \sqrt{3})}^{2} -  {( \sqrt{5})}^{2} }

[Since (x + y)(x - y) = x² - y² ]

\tt =  \dfrac{2( \sqrt{3} -  \sqrt{5})}{3 - 5} +  \dfrac{5 \sqrt{3} +  5\sqrt{5} }{3 - 5}

\tt =  \dfrac{2( \sqrt{3} -  \sqrt{5})}{ - 2} +  \dfrac{5 \sqrt{3} + 5 \sqrt{5} }{ - 2}

\tt =  \dfrac{2\sqrt{3} -  2\sqrt{5}}{ - 2} +  \dfrac{5 \sqrt{3} + 5 \sqrt{5} }{ - 2}

\tt =  \dfrac{2 \sqrt{3} - 2 \sqrt{5} + (5 \sqrt{3} + 5 \sqrt{5})}{ - 2}

\tt =  \dfrac{2 \sqrt{3} - 2 \sqrt{5} + 5 \sqrt{3} + 5 \sqrt{5}}{ - 2}

\tt =  \dfrac{7 \sqrt{3} + 3 \sqrt{5} }{ - 2}

\tt =  \dfrac{7 \sqrt{3} }{ - 2} +  \dfrac{3 \sqrt{5} }{ - 2}

\tt =   - \dfrac{7 \sqrt{3} }{2} + ( -  \dfrac{3 \sqrt{5} }{2})

\tt =   - \dfrac{7 \sqrt{3} }{2}-  \dfrac{3 \sqrt{5} }{2}

Now consider

\bf \dfrac{2}{ \sqrt{3} +  \sqrt{5}} +  \dfrac{5}{ \sqrt{3} -  \sqrt{5}} = a \sqrt{3} + b \sqrt{5}

\tt - \dfrac{7 \sqrt{3} }{2}-  \dfrac{3 \sqrt{5} }{2} =  a \sqrt{3} + b \sqrt{5}

Comparing on both sides

\tt a \sqrt{3} =  -  \dfrac{7 \sqrt{3} }{2}

\tt a\cancel{\sqrt{3}} =  -  \dfrac{7\cancel{ \sqrt{3}} }{2}

\tt a =  -  \dfrac{7}{2}

\tt b \sqrt{5} =  -  \dfrac{3 \sqrt{5} }{2}

\tt b\cancel{ \sqrt{5}}=  -  \dfrac{3\cancel{\sqrt{5}} }{2}

\tt b =  -  \dfrac{3}{2}

\Huge{\boxed{ \tt a =  -  \dfrac{7}{2} , \: b =  -  \dfrac{3}{2} }}

Similar questions