Math, asked by MSAI1793, 1 year ago

If 2's power x =3's power y=36's z then find the value of z

Answers

Answered by Navneeetkrh
2
so,is it the right answer?
Attachments:
Answered by sanjeevk28012
4

Given :

The equation as  2^{x} =  3^{y}  = 36^{z}

To Find :

The value of z

Solution :

Let   2^{x} =  3^{y}  = 36^{z}   = k

i.e    2^{x}  = k

Or,   ( 2^{x} ) ^{\dfrac{1}{x} }  = ( k) ^{\dfrac{1}{x} }

Or,   ( k) ^{\dfrac{1}{x} } = 2                  ...............1

Again

i.e    3^{y}  = k

Or,   ( 3^{y} ) ^{\dfrac{1}{y} }  = ( k) ^{\dfrac{1}{y} }

Or,  ( k) ^{\dfrac{1}{y} }  = 3                   ...............2

Again

i.e    36^{z}  = k

Or,   ( 36^{z} ) ^{\dfrac{1}{z} }  = ( k) ^{\dfrac{1}{z} }

Or,  ( k) ^{\dfrac{1}{z} }  = 36                   ...............3

Now,

From eq 3

( k) ^{\dfrac{1}{z} }  =  6 × 6

Or,  ( k) ^{\dfrac{1}{z} }  =  2² × 3²

Fro, eq 1 and eq 2

( k) ^{\dfrac{1}{z} }  =  ( ( k) ^{\dfrac{1}{x} }  )²  ×  ( ( k) ^{\dfrac{1}{y} } ) ²

Or,  ( k) ^{\dfrac{1}{z} }  =   ( k) ^{\dfrac{2}{x} }    ×   ( k) ^{\dfrac{2}{y} }

Or,  ( k) ^{\dfrac{1}{z} }  =   k [^{\dfrac{2}{x} +\dfrac{2}{y} }]               ( ∵ a^{c} × a^{b} = a^{c+b}  , from base indices )

As both side have k as base

∴    \dfrac{1}{z }  = \dfrac{2}{x} + \dfrac{2}{y}

Or,  \dfrac{1}{z}  = \dfrac{2y+2x}{yx}

Or,  z = \dfrac{xy}{2(x+y)}

Hence, The value of z for the given equation is \dfrac{xy}{2(x+y)}  Answer

Similar questions