Math, asked by prathamgoud13, 3 months ago

if 2 sin^2θ+7 cosθ=5 then find the permissible values of cos θ

Answers

Answered by suhail2070
0

Answer:

\cos( \alpha )  =  \frac{ - 2}{ - 4}  =  \frac{1}{2}

Step-by-step explanation:

2 { \sin( \alpha ) }^{2}  + 7 \cos( \alpha )  = 5 \\  \\ 2(1 -  { \cos( \alpha ) }^{2} ) + 7 \cos( \alpha )  = 5 \\  \\ 2 - 2 { \cos( \alpha ) }^{2}  + 7 \cos( \alpha )  = 5 \\  \\  \\  \\  - 2 { \cos( \alpha ) }^{2}  + 7 \cos( \alpha )  - 3 = 0 \\  \\  \\ d =  {7}^{2}  - 4(2)(3) \\  \\ d = 49 - 24 \\  \\ d = 25 \\  \\  \sqrt{d}  = 5 \\  \\  \cos( \alpha )  =  \frac{ - 7 + 5}{2 \times  - 2}  \\  \\  \\  \cos( \alpha )  =  \frac{ - 2}{ - 4}  =  \frac{1}{2}

Similar questions