Math, asked by araji03036, 11 months ago

If 2.sin 2 theta =√3, then prove that 3 cot square theta -2 sin 0 =8.​

Answers

Answered by Anonymous
1

Question:

If 2•sin2@ = √3 , then prove that

3•(cot@)^2 - 2•sin@ = 8.

Given:

2•sin2@ = √3

To prove:

3•(cot@)^2 - 2•sin@ = 8

Proof:

We have ,

=> 2•sin2@ = √3

=> sin2@ = √3/2

=> sin2@ = sin60° { sin60° = 3/2 }

=> 2@ = 60°

=> @ = 60°/2

=> @ = 30°

Now, we have ;

=> LHS = 3•(cot@)^2 - 2•sin@

=> LHS = 3•(cot30°)^2 - 2•sin30°

{ @ = 30° }

=> LHS = 3•(√3)^2 - 2•(1/2)

{ cot30°= 3 , sin30°=1/2 }

=> LHS = 3•3 - 1

=> LHS = 9 - 1

=> LHS = 8

=> LHS = RHS

Hence proved.

Answered by Anonymous
2

Correct Question:

If 2sin 2 theta =√3, then prove that 3 cot square theta -2 sin 30 =8.

Step-by-step explanation:

For simplicity , we will use theta as alpha.

Now,

Given that,

2 \sin(2 \alpha )  =  \sqrt{3}

 =  >   \sin(2 \alpha )   =  \frac{ \sqrt{3} }{2}  \\  \\  =  > sin(2 \alpha ) =  \sin( \frac{\pi}{  3} )  \\  \\  =  > 2 \alpha  =  \frac{\pi}{3}  \\  \\  =  >  \alpha  =  \frac{\pi}{6}

Now,

we know that,

 \cot( \frac{\pi}{6} )  =  \sqrt{3}  \\  \\

Therefore,

 =  >  { \cot }^{2} ( \frac{\pi}{3} ) =  {( \sqrt{3}) }^{2}   \\  \\   =  > 3 { \cot }^{2} ( \frac{\pi}{6} ) = 3 \times 3 = 9 \\  \\  =  > 3 { \cot}^{2}( \frac{\pi}{6}  ) - 2 \sin(30)  = 9-2×\frac{1}{2}

(°.° sin 30° = \frac{1}{2} )

Hence,

\bold{ 3 { \cot}^{2}( \frac{\pi}{6}  ) - 2 \sin(30)  = 8}

Thus,

Proved

Similar questions