Math, asked by araji03036, 11 months ago

if 2 sin 2 theta =√3 then prove that 3 cot square theta -2sin theta = 8​

Answers

Answered by Martin84
4

Answer:

8

Step-by-step explanation:

2 \sin(2 \alpha )  =    \sqrt{3}  \\ \sin(2 \alpha) = \frac{ \sqrt{3} }{2}   \\  2\alpha  =  { \sin }^{ - 1}  \sin( \frac{\pi}{3} )  \\  \alpha  =  \frac{\pi}{6}  \\now \\  3 { \cot( \alpha ) }^{2}  - 2 \sin( \alpha )  \\ put \:  \alpha  =  \frac{\pi}{6}  \\ 3  { \cot( \frac{\pi}{6} ) }^{2}  - 2 \sin( \frac{\pi}{6} )  \\ 9 - 2 \times  \frac{1}{2}  \\ 9 - 1 \\ 8

Formula used

Sin(π/6) = sqrt3/2

cot(π/6) = sqrt3

Answered by lublana
2

Answer with Step-by-step explanation:

We are given that

2sin2 \theta=\sqrt3

We have to prove that

3cot^2\theta-2sin\theta=8

sin2\theta=\frac{\sqrt3}{2}

2\theta=sin^{-1}\frac{\sqrt3}{2}

2\theta=sin^{-1}(sin\frac{\pi}{3}})

(sin\frac{\pi}{3}=\frac{\sqrt3}{2})

2\theta=\frac{\pi}{3}

\theta=\frac{\pi}{6}

3cot^2\theta-2sin\theta=3cot^2(\frac{\pi}{6})-2sin(\frac{\pi}{6})

3cot^2\theta-2sin\theta=3\times 3-2\times \frac{1}{2}=9-1=8

Because cot\frac{\pi}{6}=\sqrt3, sin\frac{\pi}{6}=\frac{1}{2})

Hence, proved

Similar questions