If 2 sin (3x – 15)° = root3, find the value of
sin^2 (2x + 10)° + tan^2 (x + 5)º
Attachments:
Answers
Answered by
0
Answer:
2sin(3x-15)° =√3
2sin(3x-15)° =2*√3/2
2sin(3x-15)° =2sin60°
on comparing
3x-15 = 60
3x = 60+15
3x = 75
x = 75/3
(x = 25)
sin^2(2x+10) + tan^2(x+5)
put the value of x
sin^2 (60) + tan^2 (30)
(√3/2)^2 +(1/√3)^2
3/4 +1/3
take LCM
9+4/12=13/12
Answered by
9
Answer:
2sin(3x-15)°=√3
=> sin(3x-15)°=√3/2
But,
sin 60°=√3/2
.
. . Sin60°=sin(3x-15)°
=> 60°=(3x-15)°
=>3x=60°+15°
=>3x=75°
=> x=25°
* Sin^2(2x+10)° + tan^2(x+5)°
=>Sin^2(50+10)° + tan^2(25+5)°
=>Sin^2(60)° + tan^2(30)°
=>(√3/2)^2 + (1/√3)^2
=>3/4 + 1/3
=>(9+4)/12
=>13/12
Similar questions