Math, asked by tummu72, 1 year ago

If 2 sin (3x - 15°) = √3,

then find the value of sin^2 (2x + 10)° + tan^2(x + 5)°.

Answers

Answered by Vaibhavhoax
25
Heya !!

Here's ur answer !

Given 2 sin (3x -15)° = √3

 \bold = sin(3x - 15)\degree \: = \frac{ \sqrt{3} }{2} =<br /><br />\\ <br /><br />sin(3x - 15) \degree = sin \: 60 \degree<br /><br /> \\ <br /><br />= 3x - 15 = 60 = 3x = 75 = x = 25.<br /><br /> \\ <br /><br />\therefore \: {sin}^{2} (2x - 10) \degree + {tan}^{2} (x + 5) \degree <br /><br />\\<br /><br />= {sin}^{2} 60 \degree \: + {tan}^{2} 30 \degree \\ = (\frac{ \sqrt{3} }{2} )^{2} + ( \frac{1}{ \sqrt{3} } )^{2} = \frac{3}{4} + \frac{1}{3} \\ = \frac{9 + 4}{12} = \frac{13}{12}.
Glad help uh !

thanks .

Anonymous: bhai unblock me
meghakatiyar1: promise kiya tmne jabhi chorke nhi jaoge then kyu
meghakatiyar1: too sach sunna chahita hsi toh sun
Answered by CUTESTAR11
6

Step-by-step explanation:

Hey dear ‼️

==> 13/12 is your answer..

keep loving....❤️❤️❤️❤️❤️✌️

Similar questions