If 2 sin A = 2 - cos A, then find the value of sin A
Answers
Answered by
1
Answer:
The values of sinA are 1 and 3/5
Step-by-step explanation:
So, 2 sinA = 2 - cosA
Squaring both sides:
(2 sinA)^2 = (2 - cosA)^2
4 (sinA)^2 = 4 + (cosA)^2 - 4 cosA
4 - 4 (cosA)^2 = 4 + (cosA)^2 - 4 cosA
4 - 4 (cosA)^2 - 4 - (cosA)^2 + 4 cosA = 0
4 cosA - 5 (cosA)^2 = 0
Case 1:
cosA = 0
Case 2:
4 - 5 cosA = 0
4 = 5cosA
cosA =4/5
As, (sinA)^2 + (cosA)^2 = 1
Case 1:
(sinA)^2 + 0^2 = 1
sinA = 1
Case 2:
(sinA)^2 +(4/5)^2 = 1
(sinA)^2 + (16/25) =1
(sinA)^2 = 1 - (16/25)
(sinA)^2 = 9/25
sinA = 3/5
Therefore, The values of sinA are 1 and 3/5 .
Hope the answer helps you :D
Similar questions