Math, asked by kusumkmri26april, 2 months ago


if (2 sin A + cosecc A)=2root2
Value of
2(sin to the power 4+cos to the power 4)​

Answers

Answered by tennetiraj86
2

Step-by-step explanation:

Given :-

2 Sin A + Cosec A = 2√2

To find :-

Find the value of 2(Sin^4 A + Cos^4 A)?

Solution :-

Given that :

2 Sin A + Cosec A = 2√2

=> 2 Sin A + (1/Sin A) = 2√2

=> [2 Sin A( Sin A ) + 1] / Sin A = 2√2

=> (2 Sin^2 A+1)/ Sin A = 2√2

=> 2 Sin^2 A +1 = 2√2 Sin A

=> 2 Sin^2 A + 1 - 2√2 Sin A = 0

=> 2 Sin^2 A - 2√2 Sin A + 1 = 0

=> 2 Sin^2 A - √2 Sin A -√2 Sin A +1 = 0

=> √2 Sin A (√2 Sin A - 1) -1( √2 Sin A -1) = 0

=> (√2 Sin A - 1) (√2 Sin A -1) = 0

=> (√2 Sin A -1)^2 = 0

=> √2 Sin A -1 = 0

=> √2 Sin A = 1

=> Sin A = 1/√2 ---------(1)

On squaring both sides then

=> Sin^2 A = (1/√2)^2

=> Sin^2 A = 1/2

On Subtracting this from 1 both sides then

=> 1 - Sin^2 A = 1 - (1/2)

=> 1 - Sin^2 A = (2-1)/2

=> 1 - Sin^2 A = 1/2

We know that

Sin^2 A + Cos^2 A = 1

=> Cos^2 A = 1/2

=> Cos A = √ (1/2)

=> Cos A = 1/√2 ---------(2)

Now

The value of 2(Sin^4 A + Cos^4 A)

=> 2[ (1/√2)^4 + (1/√2)^4]

=> 2[(1/4)+(1/4)]

=> 2(1+1)/4

=>2(2/4)

=> 4/4

=> 1

(or)

2(Sin^4 A + Cos^4 A)

=> 2[(Sin^2 A)^2+ (Cos^2 A)^2 ]

=> 2[(Sin^2 A+ Cos^2 A)^2 - 2 Sin^2 ACos^2 A]

Since a^2+b^2 = (a+b)^2-2ab

=> 2[(1)^2-2 Sin^2 ACos^2 A]

=> 2[1-2 Sin^2 ACos^2 A]

=> 2[1-2(1/√2)^2(1/√2)^2]

=> 2[1-2(1/2)(1/2)]

=> 2[1-2(1/4)]

=> 2[1-(2/4)]

=> 2[1-(1/2)]

=> 2[(2-1)/2]

=> 2[1/2]

=> 2/2

=> 1

Answer:-

The value of 2(Sin^4 A + Cos^4 A) for the given problem is 1

Used formulae:-

  • Sin^2 A + Cos^2 A = 1

  • (a/b)^m = a^m /b^m

  • a^2+b^2 = (a+b)^2-2ab

Rough work :-

(1/√2)^4

= 1^4/(√2)^4

= 1/(√2×√2×√2×√2)

= 1/(2×2)

= 1/4

Answered by 1968rameshmv
0

Step-by-step explanation:

Tennetiraj sir please answer my Questions

Similar questions